Tests of 2D GEM detector based on the CASAGEM

Yan Huang, Zhigang Xiao, Zhi Deng , Li He, Hongyan Zhang(THU) Limin Duan, Rongjiang Hu, Herun Yang,Chenggui Lu, Peng Ma , Junwei Zhang(IMP)
> The set up of CASAGEM system
$>$ Test results of 2D GEM detector
$>$ The effect of non-uniform inter-foil distance
$>$ Status of large area GEM detector
> Summary and plan

2014.07.19 Shandong University, Weihai

The set up of CASAGEM system

Design of Readout

Collaborate with Prof. Limin Duan and his group, IMP

Pink: signal from foil(trigger)
Blue: gate signal
Yellow: signal from the CASAGEM

Collaborate with Prof. Zhi Deng and his group, JHU

$\underset{\sim}{\| \in N P} \mathcal{C}$ The set up of CASAGEM system

Trigger signal

The trigger signal is from the last layer of the second foil

Test results of 2D GEM detector

64 channels Installation

Signal transfer

Calibration of the electronics

ave 6
 Test results of 2D GEM detector

Agilent Technologies

Calibration of the electronics

X:500 8001100140017002000 2300(mv)

The calibration results of 8 channels, 64 in total.

$\frac{\mathbb{I E N P}}{\rightarrow-\infty}$
 Test results of 2D GEM detector

Second central moment

$$
E\left[x^{2}\right]=\frac{\sum_{\mathrm{i}=1}^{16}\left(x_{\mathrm{i}}-\bar{x}\right)^{2} \mathrm{a}_{\mathrm{i}}}{\sum_{\mathrm{i}=1}^{16} \mathrm{a}_{\mathrm{i}}}
$$

x_{i} is the position of fired strip
a_{i} is the amplitude of signal
\bar{x} is the position, calculated from centroid
x_{i} is the position of fired strip
a_{i} is the amplitude of signal
\bar{x} is the position, calculated from centroid
x_{i} is the position of fired strip
a_{i} is the amplitude of signal
\bar{x} is the position, calculated from centroid
hmultiSigma_X0

hmultiSigma_Yo

Test results of 2D GEM detector

Energy resolution

The correlation between Energy of \mathbf{X} direction and that of \mathbf{Y}.

Test results of 2D GEM detector

The slit is used as a collimator

Spatial resolution

 method description
Test results of 2D GEM detector

Spatial resolution method description

$$
\begin{aligned}
& \sigma_{t o t}^{2}=\sigma_{G E M}^{2}+c_{1} \sigma_{\text {Geometry }}^{2} \\
& \text { when } w \sim \sigma_{G E M} \\
& \sigma_{\text {Geometry }}=c_{2} w \\
& \sigma_{\text {tot }}^{2}=\sigma_{G E M}^{2}+c_{0} w^{2}
\end{aligned}
$$

$n=\rho w \phi \Omega \eta / 4 \pi$
$n=c_{2} w^{2} \quad \mathrm{n}$ is counting rate
NIM A701(2013)54-57
$\sigma_{t o t}^{2}=\sigma_{G E M}^{2}+c_{0} n$

Test results of 2D GEM detector

Rotated_Pos_Relevance

spatial resolution

Rotated_Pos_Relevance

In this way, we can get the spatial Resolution for a given width of the slit.

Test results of 2D GEM detector

Spatial resolution

spatial resolution

For large foil, the distance is hard to be completely homogeneous, particularly when it is running in high current in B field.

The effect of non-uniform inter-foil distance

Foil distance changed
: stands for the paddle
We have disassembled the 2D GEM and put a paddle between the two foils in one side along X.

A movable optical platform, prepared for the large GEM.

$\underset{\rightarrow \infty}{\operatorname{LIEN}}$ The effect of non-uniform inter-foil distance

gain vs foil distance

The gain decreases with relative changes of the foil distance.

Gain vs distance

$\xrightarrow[\rightarrow \infty]{\operatorname{IEN}}$ The effect of non-uniform inter-foil distance

spatial resolution vs distance

It is shown that the spatial resolution changed very little for different foil distances, this is reasonable considering that the cluster size distributions are almost the same with different distances.

Status of large area GEM detector

Scheme of the triple GEM $45 \mathrm{~cm} * 45 \mathrm{~cm}$

Collaborate with Prof. Limin Duan and his group, IMP

$\underset{\rightarrow \infty-\infty}{ }$

Collaborate with Prof. Limin Duan and his group, IMP

Summary and Plan

Summary

1）基于CASAGEM的GEM探测器测试系统正常工作。目前有 320 路电子学。
2） $5 \mathrm{~cm} * 5 \mathrm{~cm} 2$ 维 GEM探测器的能量分辨为 22% ，与商用电子学所测结果吻合，在 $\sim 45^{\circ}$ 方向上的位置分辨为 $204 \pm 13(\mu \mathrm{~m})$ 。经过多组测量得出结论：丝读出 GEM的位置分辨为：$\frac{w}{\sqrt{12}}$ ．
3）GEM 探测器的增益随膜间距的相对变化呈反线性关系。位置分辨随膜间距改变无明显变化。

4） $45 \mathrm{~cm} * 45 \mathrm{~cm} 3$ 层 GEM探测器正在组装。

Short term plan

1. Carry on some tests on the large area GEM detector when it works.
2. Improve the online DAQ system.
Thank you!

Back up

Spatial Resolution in estimation

(when Multi = 2)

Back up

