Experiments of Laser Pointing Stability on Different Surfaces To Validate Micrometric Positioning Sensor

1. Introduction

Requirements for the alignment of the Compact Linear Collider (CLIC)

• Accuracy up to 10 μ m at 1 σ over 200 m for the pre-alignment of beam related components

Alignment system under study at CERN

- Laser beam as straight line reference
- Camera / shutter assembly combined with image

4. Results

Manufacturing of shutters

processing as micrometric positioning sensor

Requirements for the micrometric positioning sensor

- Compact
- Low cost
- Compatible with its environment
- Measurement repeatability: 1 µm
- Measurement accuracy: 5 µm

			-	•
paper metal		metal	ceramic	
Shutter type	Targets		Surface flatness	Surface roughness (R _a)
Paper	Targets are printed on a sheet of paper which is glued on an aluminium plate		30-110 µm	2.8-4.8 µm
Metal	Targets are machined conical grooves in a black anodised aluminium plate		15-16 µm	0.1-0.9 µm
Ceramic	Targets are obtained through laser siltering on an alumina plate		36-37 µm	1.4-2.2 µm

Laser pointing stability

Standard deviation of the laser spot coordinates

Standard deviation of the residuals of the laser spot coordinates

11.9 µm

2. Objective

Determine the most appropriate shutter for the micrometric positioning sensor in terms of flatness and laser pointing stability

3. Method

- Pick materials with different roughness values to make shutters
- Add at least 4 targets on the shutters to have references points, and thus, determine the 8 parameters of projective geometry (transform CCD plane -> shutter plane). Take disks for targets which have the advantage of looking like ellipses regardless of the position of the camera.
- Mount camera and shutter on the same support without open/close mechanism in order to avoid

• Paper surface presents the best laser pointing stability, followed by ceramic and finally metal (possibly due to their roughness values)

5. Conclusion and outlook

- Paper surface has the best laser pointing stability but is not satisfying regarding flatness. Metal surface is the opposite: it has the best flatness but the worst laser pointing stability. In between, ceramic surface presents a good compromise.

uncertainty due to repositioning

- Determine shutter flatness by measurements in the metrology lab
- Determine laser pointing stability on the shutters by experiments

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

In a future study, we will test shutter repositioning by adding an open/close mechanism to the micrometric positioning sensor.

> G. Stern | CERN and ETH Zurich · Switzerland H. Mainaud Durand · D. Piedigrossi · J. Sandomierski · M. Sosin | CERN · Switzerland A. Geiger · S. Guillaume | ETH Zurich Switzerland

13th International Workshop on Accelerator Alignment | 13–17. X. 2014 | Beijing · China