$e\pm$ Collider - Polarization considerations

E. Gianfelice (Fermilab)

Overview:

- Preamble
- A "toy" ring
- Sokolov-Ternov polarization in a 100 km ring
- Effect of wigglers
- First simulations
- Summary

HF2014, October 12, 2014

from M. Benedikt talk at kick-off meeting

FCC-ee parameters – starting point

Design choice: max. synchrotron radiation power set to 50 MW/beam

- Defines the maximum beam current at each energy
- · 4 physics operation points (energies) foreseen Z, WW, H, ttbar
- Optimization at each operation point, mainly via bunch number and arc cell length

Parameter	Z	ww	Н	ttbar	LEP2
E/beam (GeV)	45)	(80)	120	175	105
L (10 ³⁴ cm ⁻² s ⁻¹)/IP	28.0	12.0	5.9	1.8	0.012
Bunches/beam	16700	4490	1330	98	4
I (mA)	1450	152	30	6.6	3
Bunch popul. [10 ¹¹]	1.8	0.7	0.47	1.40	4.2
Cell length [m]	300	100	50	50	79
Tune shift / IP	0.03	0.06	0.09	0.09	0.07

Polarization for high precision energy calibration at Z pole and WW

- \bullet a $e\pm$ collider in a 100 km ring: generous
- a place holder for a future p/p collider

Setting the geometry

Assuming: B_{max} =16 T, E_{beam}^p =50 TeV and L_{tot} =100 Km

$$ho_b=rac{p}{e}B=$$
 10423.6 m $L_{bends}=2\pi
ho_b=$ 65493.5 m $rac{L_{bends}}{L_{tot}}=$ 0.655

Maximum dispersion (FODO):

$$\hat{D}=rac{L_{cell}\phi_b}{2}rac{1+0.5\sin\mu/2}{\sin^2\mu/2}$$
 $2\phi_b\equiv$ cell bending angle

 ϕ_b and thus ℓ_b a should be large for avoiding too small dispersion (chromaticity correction!)

Attempt: ℓ_b =30 m $\phi_b = \ell_b/\rho_b$ =0.00287808 rad and $\mu = 60^o$

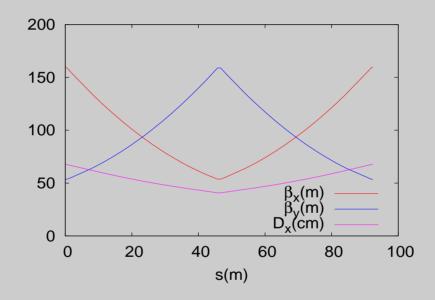
Number of cells:

$$n_{cells} = rac{2\pi}{2\phi_b} \simeq 1090$$

 $^{^{} ext{a}}~L_{cell}=0.655L_{bends}/2\pi/\phi_{b}$

"Toy" ring with 1090 cells, α_p =3.2e-5.

FODO Optics



Bending radius and beam parameters

A large bending radius may be appealing for some parameters

$$U_{loss} = C_{\gamma} E^4/{
ho} ~~(\Delta E/E)^2 = C_q \gamma^2/J_{\epsilon}
ho$$

Synchrotron radiation integrals

$$egin{aligned} \mathcal{I}_2 &\equiv \oint ds rac{1}{
ho^2} \ & \mathcal{I}_4 \equiv 2 \oint ds rac{D_x K}{
ho} \ & \mathcal{I}_5 \equiv \oint ds rac{eta_x D_x'^2 + 2lpha_x D_x D_x' + \gamma_x D_x^2}{|
ho|^3} \end{aligned}$$

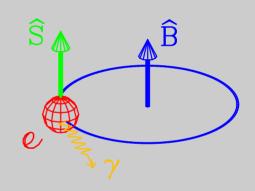
- ightarrow small equilibrium emittance: $\epsilon_x = C_q \gamma^2 rac{\mathcal{I}_5}{J_x \, \mathcal{I}_2}$
- ightarrow but large damping time: $au_x = rac{2\pi R}{C_x E^3} rac{1}{\mathcal{I}_2 \mathcal{I}_4}$

1/2 spin particle in a constant homogeneous magnetic field.

Two stable states: $ec{S} \uparrow \uparrow ec{B} \ ec{S} \downarrow \uparrow ec{B}$

Sokolov-Ternov (1964): a small amount of the radiation emitted by a particle moving in such a field is accompanied by a *spin flip*, so transitions between the two states are possible.

Slightly different probabilities \rightarrow self polarization!



$$ullet$$
 Equilibrium polarisation: $P_{ST}=rac{W_{\uparrow}\ \downarrow-W_{\downarrow\uparrow}}{W_{\uparrow}\ \downarrow+W_{\downarrow\uparrow}}=rac{8}{5\sqrt{3}}=92.4\%$

• Build-up rate:

$$rac{1}{ au_{ST}} = W_{\uparrow \; \downarrow} + W_{\downarrow \uparrow} \; = rac{5\sqrt{3}}{8} rac{r_0 h}{2\pi m_0} rac{\gamma^5}{|oldsymbol{
ho}|^3}$$

Actual ring accelerators include *quadrupoles* and their alignment is not perfect: when a particle emits a photon it starts to perform synchro-betatron oscillations around the machine *actual* closed orbit experiencing extra possibly *non vertical* fields.

The expectation value $ec{S}$ of the spin operator moves according to the Thomas-BMT equation

$$rac{dec{S}}{dt} = ec{\Omega}(s;ec{u}) imes ec{S} \qquad ec{u} \equiv$$
 positions in 6D phase space

In the laboratory frame and MKS units

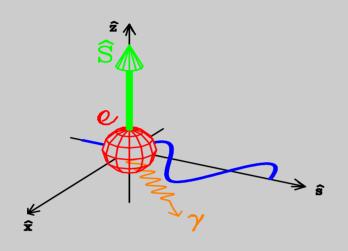
$$ec{\Omega}(ec{u};s) = -rac{e}{m_0} \Big[\Big(a + rac{1}{\gamma} \Big) ec{B} - rac{a \gamma}{\gamma + 1} ec{eta} \cdot ec{B} ec{eta} - \Big(a + rac{1}{\gamma + 1} \Big) ec{eta} imes ec{E} \Big]$$

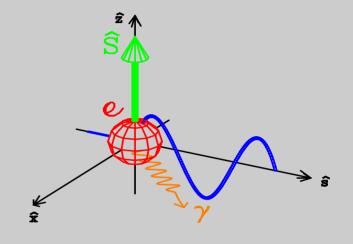
with $ec{eta} \equiv ec{v}/c$ and a = (g-2)/2 = 0.0011597.

- Periodic solution along the closed orbit: \hat{n}_0 .
- In a planar machine $n_0(s) \equiv \hat{z}$.
- Any other spin precesses around \hat{n}_0 ; spin tune (number of precession per turn): $a\gamma$ (in the rotating frame).

Planar machine

Non planar machine





At the quads:
$$B_x = ky = 0$$

$$B_y = kx \neq 0$$

no spin diffusion

$$B_x = ky
eq 0$$
 $B_y = kx
eq 0$

spin diffusion!

Sokolov-Ternov effect Perturbations in the guiding dipole field (v-bends, quads, sexts etc.) $\downarrow \qquad \qquad \downarrow \\ \text{Polarisation} \qquad \text{Depolarisation} \\ \text{Equilibrium polarisation} \ (< P_{ST})$

General expression (Derbenev-Kondratenko, semiclassical approximation, 1973)

$$ec{P}_{DK} = \hat{n}_0(s) \ P_{ST} rac{\oint ds < rac{1}{|
ho|^3} \hat{b} \cdot (\hat{n} - rac{\partial \hat{n}}{\partial \delta}) > ^{\mathsf{a}}}{\oint ds < rac{1}{|
ho|^3} \Big[1 - rac{2}{9} (\hat{n} \cdot \hat{s})^2 + rac{11}{18} (rac{\partial \hat{n}}{\partial \delta})^2 \Big] > }$$

with

$$\hat{b} \equiv ec{v} imes \dot{ec{v}}/|ec{v} imes \dot{ec{v}}|$$
 $\hat{n}(ec{u};s) \equiv$ phase space dependent periodic solutions to T-BMT equation

$$egin{aligned} au_{DK}^{-1} &= P_{ST} rac{r_e \gamma^5 \hbar}{m_0 C} \oint < rac{1}{|oldsymbol{
ho}|^3} \Big[1 - rac{2}{9} (\hat{n} \cdot \hat{s})^2 + rac{11}{18} (rac{\partial \hat{n}}{\partial \gamma})^2 \Big] > 0 \end{aligned}$$

The term $\partial \hat{n}/\partial \delta$, with $\delta \equiv \delta E/E$ quantifies depolarizing effects resulting from trajectory perturbations due to the photon emission.

In a perfectly planar machine $\partial \hat{n}/\partial \delta = 0$. In presence of quadrupole vertical misalignments (and/or spin rotator) $\partial \hat{n}/\partial \delta \neq 0$ and large when

$$u_{spin} \pm mQ_x \pm nQ_y \pm pQ_s = ext{integer}$$

a averages over phase space.

In *linear* orbit and spin motion approximation (Yokoya, 1982)

$$\frac{\partial \hat{n}}{\partial \delta}(\vec{u};s) = \vec{d}(s) = \frac{1}{2} \Im \left\{ (\hat{m}_0 + i\hat{l}_0)^* \sum_{k=\pm x, \pm y, \pm s} \Delta_k \right\} \qquad (\hat{m}_0,\hat{l}_0,\hat{n}_0) \ \text{ spin basis}$$

The functions Δ_k are given by

$$\Delta_{\pm x, \pm y} = (a\gamma + 1) \frac{e^{\mp i\mu_{x,y}}}{e^{2i\pi(\nu \pm Q_{x,y})} - 1} \frac{[-D \pm i(\alpha D + \beta D')]_{x,y}}{\sqrt{\beta_{x,y}}} J_{\pm x, \pm y}$$
 $\Delta_{\pm s} = (a\gamma + 1) \frac{e^{\pm i\mu_{s}}}{e^{2i\pi(\nu \pm Q_{s})} - 1} J_{s}$

where

$$J_{\pm x,\pm y} = \int\limits_s^{s+L} ds' (\hat{m}_0 + i\hat{l}_0) \cdot \left\{egin{array}{c} \hat{y}\sqrt{eta_x} \ \hat{x}\sqrt{eta_y} \end{array}
ight\} K e^{\pm i \mu_{x,y}}$$

$$J_s = \int\limits_s^{s+L} ds'(\hat{m}_0 + i\hat{l}_0) \cdot (\hat{y}D_x + \hat{x}D_y)K$$

In a flat designed perfect machine $\vec{d}(s) = 0$.

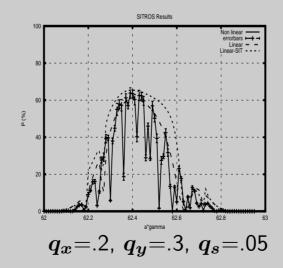
- Polarization first observed at ACO (Orsay) in 1968.
- The self polarization mechanism has been exploited at
 - HERA-e which provided *longitudinal* polarization for HERMES, H1 and ZEUS by using *spin rotators*.
 - LEP for energy calibration through RF resonant depolarization.

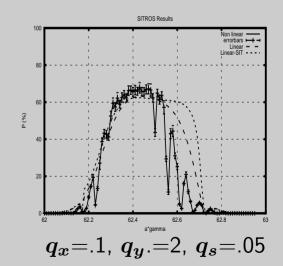
High level of polarization was obtained through

ullet Beam energy optimization: with u_s half-integer the working point is halfway from all resonances.

HERA-e

Small fractional part of orbital tunes

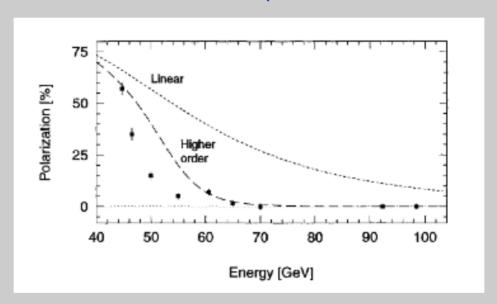




- Orbit correction in order to minimize vertical emittance and to reduce the distortion, $\delta \hat{n}_o$, of the T-BMT equation periodic solution from the design one (vertical in the arcs).
- Dedicated $\delta \hat{n}_0$ correction

LEP operated between 40 and 100 GeV.

LEP measured polarization



(R. Assmann et al., SPIN2000, Osaka)

Due to larger spin diffusion polarization strongly decreased with energy!

Polarization at the e^{\pm} FCC

For a 100 km long machine with ρ_b =10423.6 m

$oldsymbol{E}$	U_{loss}	$\Delta E/E$	ϵ_x	$ au_x$	$ au_{pol}$
(GeV)	(MeV)	% 0	(μm)	(ms)	(h)
45	35	0.38	0.85e-3	868	256
80	349	0.67	0.27e-2	218	14

In presence of imperfections the actual polarization and polarization time are reduced

$$au_p = au_{ST} rac{P}{P_{ST}}$$

For instance τ_p =30' corresponds to

$oldsymbol{E}$ (GeV)	P
45	0.2
80	3.3

Useful level of polarization for energy calibration: \sim 5-10% \rightarrow Not an option, at least at 45 GeV ...

Polarization in presence of wigglers

For decreasing the polarization time the obvious recipe is increasing synchrotron radiation emission by introducing *wiggler* magnets.

Polarization rate in a perfect planar machine, with fields possibly pointing in different directions (from DK equation on the design closed orbit):

$$au_{p}^{-1} = rac{5\sqrt{3}}{8} rac{r_{e} \gamma^{5} \hbar}{m_{0} C} \oint rac{ds}{|
ho|^{3}} \equiv F \Big[\int_{dip} rac{ds}{|
ho_{d}|^{3}} + \int_{wig} rac{ds}{|
ho_{w}|^{3}} \Big]$$

Any wiggler decreases τ_p . Polarization:

$$ec{P}=\hat{n}_0\,P_{ST}rac{\oint dsrac{\hat{B}\cdot\hat{n}_0}{|
ho|^3}}{\oint dsrac{1}{|
ho|^3}}$$

 $\hat{n}_0 \equiv$ periodic solution to T-BMT equation on the design orbit

$$P \propto au_p \oint ds \, rac{\hat{B} \cdot \hat{n}_0}{|
ho|^3} \,\,
ightarrow \,\, {\sf Small} \,\, au_p$$
, small P ???

Not necessarily...

$$\int ds \, rac{\hat{B} \cdot \hat{n}_0}{|
ho|^3} = \int_{dip} ds \, rac{\hat{B}_d \cdot \hat{n}_0}{|
ho_d|^3} + \int_{wig} ds \, rac{\hat{B}_w \cdot \hat{n}_0}{|
ho_w|^3}$$

The wiggler does not change \hat{n}_0 which in a perfectly planar ring is vertical:

$$\int_{wig} ds \, rac{\hat{B}_w \cdot \hat{n}_0}{|
ho_w|^3} = rac{1}{ep} \int_{wig} ds \, B_w^3 \, .$$

This term must be large in order to preserve a high level of polarization. For instance an antisymmetric wiggler, B(s) = -B(-s), would results in very small polarization.

To the wiggler field constraints for an unperturbed orbit outside the wiggler

$$\int_{wig} ds \, B_w = 0 \Rightarrow x' = 0 \;\;$$
 outside wiggler

$$\int_{wig} ds \: s B_w = 0 \Rightarrow x = 0 \:\:$$
 outside wiggler

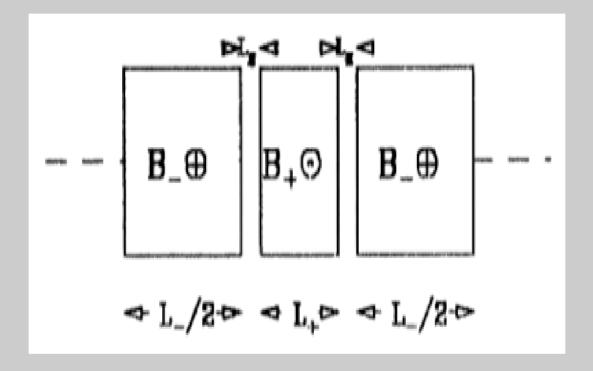
we must therefore add

$$\int_{wig} ds \, B_w^3
eq 0 \quad ext{(large)}$$

For a symmetric wiggler the condition for x=0 is automatically fulfilled.

If in addition the field integral vanishes thus also x'=0.

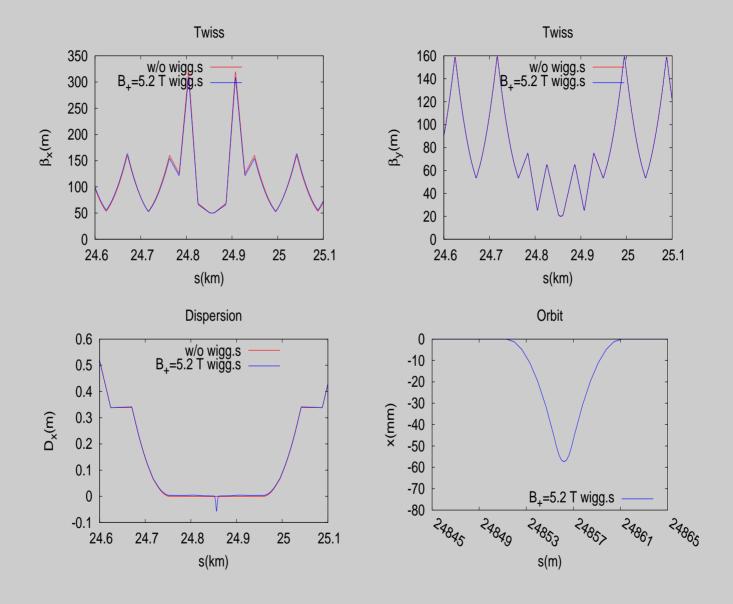
LEP polarization wiggler unit (Blondel-Jowett):



with $B_{+}/B_{-} = 6$.

4 wigglers with $L_{+}=8$ m introduced in dispersion free sections.

Optics in the dispersion free section w/o and w wiggler



Some beam parameters in presence of wigglers ^a

$oxedsymbol{B_+}$	U_{loss}	$\Delta E/E$	ϵ_x (MADX)	ϵ_x (SLIM)	$ au_x$	P	$ au_{pol}$
(T)	(MeV/turn)	(‰)	$(\mu$ m $)$	$(\mu$ m $)$	(s)	(%)	(min)
0	37	0.38	0.868e-3	0.867e-3	0.82	92.4	14e3
1.3	64	2.2	0.55e-2	0.54e-2	0.48	87.6	247
2.6	144	4.1	0.072	0.070	0.21	87.6	31
3.9	278	5.5	0.281	0.274	0.11	87.6	9
5.2	466	6.5	0.708	0.691	0.06	87.6	4

Horizontal emittance and energy spread increase: potentially harmful for polarization!

^aImplications on luminosity, beam-beam etc not investigated!

Usually the dominant higher order resonances are the *synchrotron sidebands* of the first order ones.

Distance between *imperfection* (or zeroth) order resonances: 440 MeV independently of energy! In presence of the wigglers and at 45 GeV:

B_+	$\Delta E/E$	ΔE	$ au_{pol}$
(T)	(‰)	MeV	(min)
0	0.38	17	14e3
1.3	2.2	99	247
2.6	4.1	184	31
3.9	5.5	247	9
5.2	6.5	292	4

For comparison:

	E	$\Delta E/E$	ΔE
	(GeV)	(%)	(MeV)
HERA-e	27	0.1	27
LEP	40	0.06	26
LEP	100	0.16	160

Importance of being $oldsymbol{Q}_s$

Derbenev-Kondratenko-Skrinsky predict a resurrection of polarization at high energy when the condition

$$rac{a \gamma T_{rev}}{ au_p Q_s^3} \ll 1$$

is satisfied.

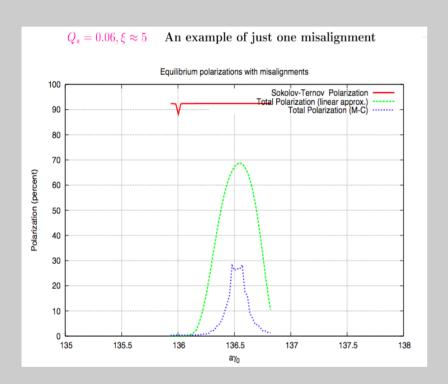
Synchrotron sidebands originate from the spin precession frequency modulation due to synchrotron oscillations.

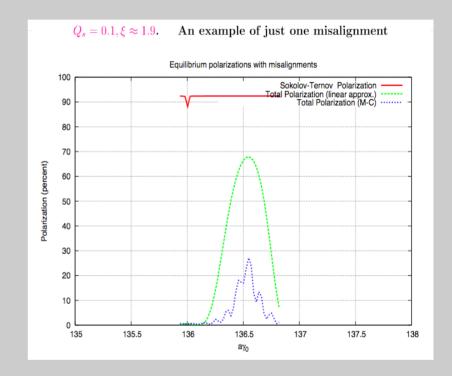
Depolarization enhancement factor due to energy spread (Yokoya, Mane)

$$\xi = \Big(rac{a\gamma}{Q_s}rac{\Delta E}{E}\Big)^2$$

- ullet Unlike the case when energy spread is small, a large Q_s could counteract the larger energy spread due to the high beam energy and/or to presence of wigglers
- These predictions are obtained under some assumptions and should be verified by simulations
- If confirmed they could have consequences on the the design of the optics (large α_p) and/or the choice of the RF parameters.

LHeC Ring-Ring scenario 60 GeV, $\Delta E \sim$ 56 MeV





(D. P. Barber et al., SPIN2010, Jülich)

What is good for polarization?

Of course resonances do not manifest themselves in a perfect machine.

- ullet Planarity by design. Distortions to \hat{n}_0 from the vertical direction must be local and spin-matched.
- Extremely well aligned magnets: it is realized in now day synchrotron radiation machines, but over 100 km?
- Non planarity due to errors must be well compensated: harmonic bumps and BBA alignment techniques should be planned. The latter requires a trim+BPM+corrector per each quadrupole.
- Space for anti-solenoids for compensating experimental solenoids must be provided.

Available codes for radiative polarization computation

- SLIM by A. Chao: analytical, linear orbit and spin motion; poor description of machine errors.
- SMILE by S. R. Mane: perturbartive, convergence problem at high energy (HERA-e and beyond).
- SITROS by J. Kewisch: tracking non-linear orbit (2th order) and spin motion; accurate description of machine errors.
- SLICKTRACK by D. P. Barber: tracking non-linear orbit and spin motion, based on a thick lenses version of SLIM formalism.

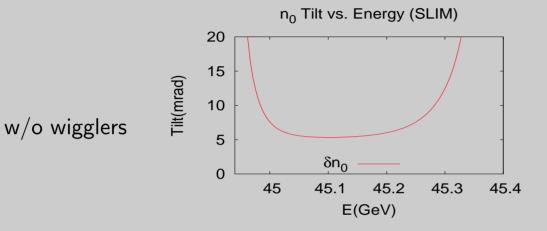
Available to me now: SLIM and SITROS, but quite some work needed to get them running again!

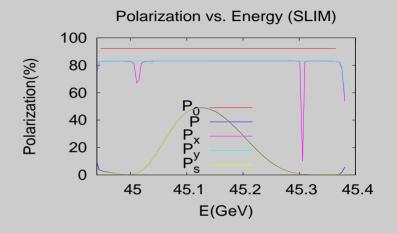
SLICKTRACK soon available from Desmond and collaborators!

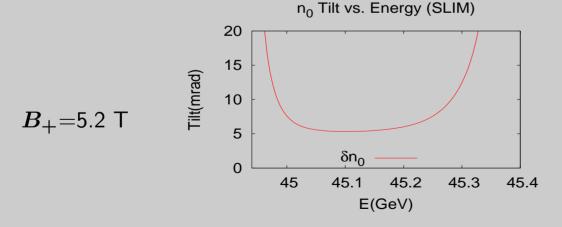
SLIM: Polarization in presence of vertical misalignments (no corrections!)

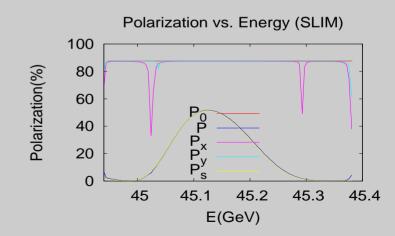
SLIM results for the "toy" machine with Q_x =181.185, Q_y =183.227 and Q_s =0.09

$$\delta_y^Q{=}$$
0.15 mm $ightarrow x_{rms}{=}$ 0.15 mm , $y_{rms}{=}$ 5.4 mm

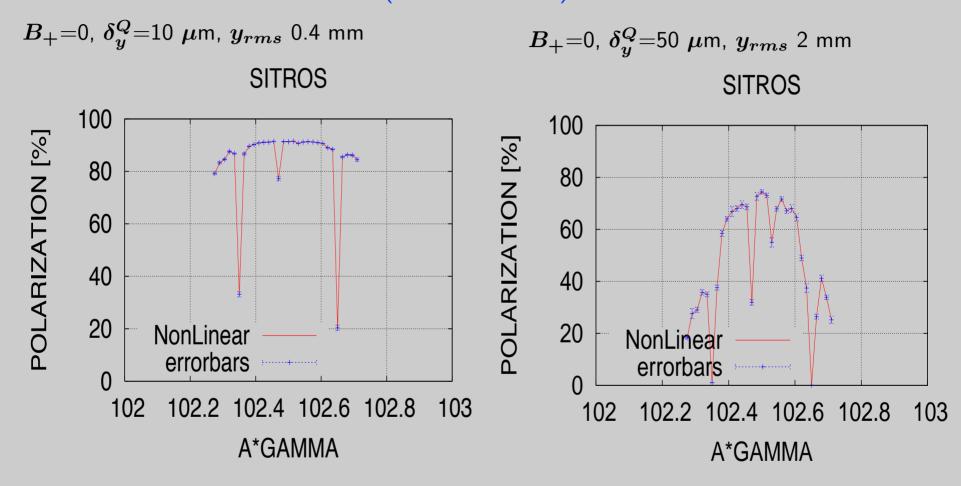








SITROS: Polarization in presence of vertical misalignments w/o wigglers (no corrections!)



Summary

45.5 GeV scenario the only here considered

- The large bending radius inflates the polarization time
- Wigglers may reduce it but at the cost of a large beam energy spread
- Polarization greatly depends upon machine planarity
- Linear calculations (SLIM) still foresee a useful level of polarization in presence of errors
- The large absolute energy spread however requires *higher order* calculations to assess how much, if any, polarization survives!

80 GeV scenario

- The larger energy enhances the polarization process
- Wigglers may further reduce the polarization time
- However the larger absolute energy spread enhances depolarization due to synchrotron motion.

