Status of CEPC Physics and Detector Studies

Yuanning Gao (Tsinghua University)

On behalf of the CEPC Physics & Detector Working group

Outline

- Introduction
 CEPC program, organization and activities
- Physics performance
- Detector studies
 vertex, tracker, calorimeters, ...
- Status of the pre-CDR
- Summary

CEPC Physics Program

 Not extremely ambitious goal for CEPC (Yes CEPC+SppC!)

- 5 ab⁻¹ for Higgs studies @240-250 GeV

- 10¹⁰⁻¹² Z's @~ 91 GeV

- 10⁶⁻⁸ W's @~160 GeV

- ...

But rather ambitious timeline!

CEPC-SppC Schedule (Preliminary)

CPEC

J. Gao, ICHEP2014

- Pre-study, R&D and preparation work
 - Pre-study: 2013-15 → Pre-CDR by 2014
 - R&D: 2016-2020
 - Engineering Design: 2015-2020
- Construction: 2021-2027
- Data taking: 2030-2036
- SPPC
 - Pre-study, R&D and preparation work
 - Pre-study: 2013-2020
 - R&D: 2020-2030
 - Engineering Design: 2030-2035
 - Construction: 2036-2042
 - Data taking: 2042 -

CEPC-SppC Organization

J. Gao, ICHEP2014

(Since 2013-09-13)

Schedule guideline for CEPC pre-CDR

August – December 2014

August 1-15	August 16-31	September 1-15	September 16-30	October 1-15	October 16-31	November 1-15	November 16-30	December 1-15	December 16-31	
pre-CDR di	raft version 0	from each (sub	-)group; (with	all required ele	ements, some	contents may b	e missing)			
(1) external reviewers identified and invitations sent out during first period; (2) additions and revisions being worked on; (3) formation of editorial board at SJTU workshop; (4) internal reviews within (sub-)groups.										
()			1,(,		•	,5				
• •		-	R chapters; (2) is			•		accelerator, sit	te design and	
civil en	gineering); (.	3) draft Introdu	ection and Sum	mary sections	available for (comments and	revision.			
(1) reviews	of chapters	(theory, detecto	or-simulation, a	ccelerator. si	ite design and	civil enginee	ring) by extern	nal review com	mittees:	
			e pre-CDR char			9	<i>a</i> ,		,	
(1) final edition (including Introduction & Summary) in English; (2) translation of pre-CDR into Chinese completed and reviewed										
(1) proof; (2	2) print and r	release to CAS a	and public							
				X.C	Lou					

Physics & Detector Working Group

- Conveners: Yuanning Gao(THU), Shan Jin(IHEP)
- sub-groups
 - physics analysis and optimization:
 Gang Li (IHEP), Manqi Ruan (IHEP), Dayong Wang(PKU)
 - vertexing and silicon tracking:Qun Ouyang(IHEP), Meng Wang(SDU)
 - main tracking:Yulan Li (THU), Huirong Qi (IHEP)
 - calorimetry and muon:Tao Hu (IHEP), Haijun Yang (SJTU)

Tasks of the working group for pre-CDR

- Explore the physics potential: thanks to 20+ years' world-wide efforts from ILC community and from Fcc-ee recently.
- Focus on feasibility studies
 - keep in mind the timeline!
 - clarify performance requirements
 - skeletonize a baseline detector design
 - availability of technologies
 - identify items for future R&D

Preliminary results for the expected precision of the measurement

	ILC 250fb-1		CEPC 500 fb-1		CEPC 2000 fb-1		CEPC 5000 fb-1	
	w/o sys (%)	w/ sys (%)						
Br : bb	0.82	1.38	0.65	1.29	0.33	1.16	0.21	1.14
сс	10.64	13.84	6.82	6.91	3.41	3.59	2.16	2.43
gg	8.83	10.70	5.62	5.73	2.81	3.03	1.78	2.10
tautau	3.53	3.60	3.76	3.93	1.87	2.18	1.19	1.64
ww	8.05	8.13	4.48	4.61	2.24	2.50	1.42	1.80
gamgam	N/A	N/A	51.97	51.98	26.45	26.48	16.79	16.83
Cross-section	0.79	1.18	0.63	1.07	0.32	0.82	0.20	0.68

✓ The tools are ready for the measurement; those results donot consider shape information.

✓ The systematics incorporating in the fit are 1% for each branching ratio, 0.5% for xsection (theory). ✓ At the level of ~1 ab-1, The improvement of ΔBr/Br is limited by the constraint of the systematic uncertainty. One caveat: assume ratio of eff. of bb,cc, gg for leptonical Z Decays and hadronic Z decay (will be replaced with new inpæs)

Strategy for the detector design

- ILC detectors, especially ILD as a reference
 - state of art detector, maximize the potential of the (rather expensive) machine
 - (hopefully) less technology challenges than ILD
 - take advantages from world-wide studies
 - sharing future critical R&D with ILC community
- "The detector" in pre-CDR has similar performance as ILD, with special considerations

Performance requirements of ILC detectors

- Vertexing $(h \rightarrow b\overline{b}, c\overline{c}, \tau^+\tau^-)$
 - ~1/5 r_{beampipe},~1/30 pixel size (wrt LHC)

$$\sigma_{ip} = 5\mu m \oplus 10\mu m / p \sin^{3/2} \theta$$

- Tracking $(e^+e^- \rightarrow Zh \rightarrow \ell^+\ell^- X; \text{ incl. } h \rightarrow \text{nothing})$
 - ~1/6 material, ~1/10 resolution (wrt LHC)

$$\sigma(1/p) = 5 \times 10^{-5} / \text{GeV}$$
 or better

- Jet energy (Higgs self-coupling, W/Z seperation)
 - ~1/2 resolution (wrt LHC)

$$\sigma_E / E = 0.3 / \sqrt{E(GeV)}$$

ILD Detector Design

Special considerations

Power pulsing not possible:

more cooling and/or less channels?

• $L^* = 1.5 m$ (cf. 3.5m at ILC):

challenges for the IR design

Unit: cm

Processing to Full Simulation

- Geometry: modifying as we want
- Full Reconstruction: adjusting to new geometries
- Sample:
 - Signal (o(100 k)): Full Simulated, reconstructed and Validated
 - ILD, and ILD with Smaller L*: Validated
 - Smaller L* & Smaller TPC: In Validating, minor unexpected pattern emerge
 - Background:
 - ILC Reconstructed DST file
 - Fast simulated
- Tactic:
 - Accomplish the analysis at ILD & Smaller L* ILD, then process to further modified version
 - Process background Full Simulation once we got enough computing resource

Reconstruction step Arbor PFA

- ➤ generic PFA to future
 - Excellent separation & sub-shower structure recognition
 - Clear physics interpretation
- ➤ breakthrough at speed: < 1min to process an event with ~100k hits (eg, CMS detector with 140 Pile up)
- ➤applying to Full Simulation at CEPC

Arbor vs Pandora

Arbor Uses GRPC Hadron Calorimeter, whose intrinsic resolution – based on current energy estimator is worse than that Pandora Used (Scintillator Tile Analogy HCAL).

Vertexing

Vertexing
$$(h \rightarrow b\overline{b}, c\overline{c}, \tau^+\tau^-)$$

- ~1/5 r_{beampipe},~1/30 pixel size (wrt LHC)

$$\sigma_{ip} = 5\mu m \oplus 10\mu m / p \sin^{3/2} \theta$$

- Tracking $(e^+e^- \rightarrow Zh \rightarrow \ell^+\ell^- X; \text{ incl. } h \rightarrow \text{nothing})$
 - ~1/6 material, ~1/10 resolution (wrt LHC)

$$\sigma(1/p) = 5 \times 10^{-5} / \text{GeV}$$
 or better

- Jet energy (Higgs self-coupling, W/Z separation)
 - ~1/2 resolution (wrt LHC)

$$\sigma_E/E = 0.3/\sqrt{E(\text{GeV})}$$

Baseline design

Q. Ouyang 20140912

ILD-like design

- VXD: 3 layers double-sided pixels
- Si-tracker:
 - FTD 7 disks (2 disks with pixels and 5 disks with Si strip sensor) on each side
 - SIT 2 inner layers Si strip detectors
 - SET 1 outer layer Si strip detector
 - ETD 1 end-cap Si strip on each side

Radiation Background

- beam induced background imposes large impacts on detector design (e.g. detector occupancies, radiation damage, etc.)
- may degrade detector performance (additional noise in finding tracks/vertices)
- Guinea-Pig (beam-beam interaction simulation) + Geant4

two main processes: **beamstrahlung photons** + **pair production**The black line indicates the polar angle coverage of the vertex detector

Baseline design: forward region

L*=1.5m

Q. Ouyang 20140912

An alternative layout is being investigated for the constraints induced by the QD0 at 1.5m

- Remove FTD6 and FTD7 will ruin the IP resolution for tracks <10 degrees (and if smaller TPC, worse momentum resolution)
- One more pixel measurement can save the IP resolution
- further optimization studies needed based on IP design and background

Simulation and performance optimization studies

LDT simulation setup

Q. Ouyang 20140912

LDT: Fast simulation using Kalman filter

- A helix track model inclusion multiple scattering
- Simplified simulation + track reconstruction
- "Validated" by CLIC CDR
- Studies
 - Dependence on material budget
 - Dependence on single point resolution
 - Dependence on arrangement of layers
 - R_beampipe=10 mm
 - L*~=1.5m

- If single point resolution worse by 50%, ip.resol worse by 30%/10% for high/low pt tracks
- If material budget increase by a factor of 2, ip.resol worse by 20% for 90 degrees tracks
- Reduce the radius of beam pipe will gain a little

Forward impact parameter resolution and momentum resolution can

be cured by 1 additional pixel measurement Q. Ouyang 20140912

Barrel momentum resolution is dominated by the smaller TPC

- 1, ILC
- 2, L*=1.5 remove FTD6/7
- 3, 2 and insert FTD6/7
- 4, 2 and Extend VTX1/2
- 5, 2 and Reduce FTD1 inner radius
- 6, 2 and Add FTD0
- 7, with both 4 and 5. only slightly better than 4

constrained by IP region, background

Sensor options

Identification of b/c quarks and τ lepton requires:

- Spatial resolution
 - 3um
- Material Budget
 - 0.15% X0/Layer
- Inner-most Layer Radius
 - ~1.6cm
- Occupancy
 - Less than a few %
- Radiation tolerance
 - 1KGy&10¹¹n_{eq}/cm² per year

- Pixel Pitch
 - 20um
- Sensor thinning
 - 50um thick
- Power consumption
 - Less than 50 mW/cm² required by air cooling
- Time window
 - 20us (depends on beam induced background)
- Radiation tolerance
 - 1KGy&10¹¹n_{eq}/cm² per year

- ILC/CLIC Vertex
- DEPFET for BELLEII
- ALPIDE for ALICE upgrade

The same physics, but pulsed colliding mode

Continuous colliding mode

DEPFET for BELLEII

Possible application for CEPC inner most layer:

- 0.15% material budget (0.21% currently)
- 2.5W/ladder in sensitive area
- Time window of 50µs

Read hit pixel only

Q. Ouyang 20140912

Low power

511

ALPIDE for ALICE Upgrade

- HR-CMOS Sensor with a novel readout structure
 - In-pixel discriminator and digital memory based on a current comparator,
 - In-column address encoder,
 - End-of-column read-out,
 - 22μm*22μm,
 - <50mW/cm² expected,
 - Capable of readout every ~4μs.
- The same principle can be applied to SOI
 - Mature process available, 0.2μm KEK-SOI process,
 - Full CMOS circuit,
 - Fully depleted HR substrate,
 - Thinning to 50μm demonstrated.

(b) In-pixel front-end circuitry of ALPIDE (simplified)

Tracking

- Vertexing $(h \rightarrow b\overline{b}, c\overline{c}, \tau^+\tau^-)$
 - ~1/5 r_{beampipe},~1/30 pixel size (wrt LHC)

$$\sigma_{ip} = 5\mu m \oplus 10\mu m / p \sin^{3/2} \theta$$

Tracking
$$(e^+e^- \rightarrow Zh \rightarrow \ell^+\ell^- X; \text{ incl. } h \rightarrow \text{nothing})$$

- ~1/6 material, ~1/10 resolution (wrt LHC)

$$\sigma(1/p) = 5 \times 10^{-5} / \text{GeV}$$
 or better

- Jet energy (Higgs self-coupling, W/Z separation)
 - ~1/2 resolution (wrt LHC)

$$\sigma_E/E = 0.3/\sqrt{E(\text{GeV})}$$

Baseline design

- TPC as the main tracker
 - same as ILD
 - a relative earlier involvement in LCPC collaboration

test of a TPC prototype at THU

- cylinder length: 500 mm
- readout GEM: 100 x 100 mm²
- 10 x 62 pads, staggered placement
 - pad size: $9.5 \times 1.5 \text{ mm}^2$
 - pitch: 10 mm × 1.6 mm
- 10 x 32 pads used due to limited number of electronic channels

Impact of a shorter L*

- a shorter TPC?
- non-uniformity of the B-field due to QD0?

Simulation studies

- Mokka for detector simulation: the track of charged particle; energy deposit; particle decay and scattering.
- Digitization by MarlinTPC
 - Available gas: TDR, P10, P5, T2K
 - However, it seems that the progresses of gas amplification and charge distribution are very time-consuming.
- Two options for track reconstruction:
 - Clupatra
 - MarlinTPC: maybe more suitable for detailed TPC research; need further optimization.
- Occupancy
 - Input of beam parameters: luminosity, bunch crossing rate ...
 - The impact of occupancy on tracking and ion back flow.
- TPC tracking performance in non-uniform magnetic field. The effect of electron drifting should be also be considered.

Impact of a short TPC

Parameter of Simu.

- \blacksquare Half Z=1.0m,2.0m,2.5m
- $r_{in} = 329 \text{ mm}$
- $r_out = 1808 \text{ mm}$
- □ pad size: 1mm×6mm
- Number of pads:~200
- \Box B = 3.5 Tesla
- With multiple scattering
- on ILD-TPC with smearing of 100 µm
- Momentum:20GeV

Impact of a thin TPC

Parameter of Simu.

- out_radius=1365,1600,1808
- Half Z=2.0m
- $r_in = 329 \text{ mm}$
- pad size: 1mm×6mm
- Number of pads:~200
- B = 3.5 Tesla
- With multiple scattering
- on ILD-TPC with smearing of 100µm
- Momentum:20GeV

Simulation studies - summary

- TPC as the main tracker fulfill the performance requirements
- Challenge due to short L*
 - Half_Z ≥ 2m is necessary => QD0 fully inside TPC
 - B-field non-uniformity not a big issue if an accurate B-field map is given $\Delta B(x)/B(x) < 10^{-4}$
- Prepare another option for the main tracker?

Calorimeters

- Vertexing $(h \rightarrow b\overline{b}, c\overline{c}, \tau^+\tau^-)$
 - ~1/5 r_{beampipe},~1/30 pixel size (wrt LHC)

$$\sigma_{ip} = 5\mu m \oplus 10\mu m / p \sin^{3/2} \theta$$

- Tracking $(e^+e^- \rightarrow Zh \rightarrow \ell^+\ell^- X; \text{ incl. } h \rightarrow \text{nothing})$
 - ~1/6 material, ~1/10 resolution (wrt LHC)

$$\sigma(1/p) = 5 \times 10^{-5} / \text{GeV}$$
 or better

- Jet energy (Higgs self-coupling, W/Z separation)
 - ~1/2 resolution (wrt LHC)

$$\sigma_E / E = 0.3 / \sqrt{E(GeV)}$$

Challenge: cooling

- ILD has some ~100M channels cooling <-> power pulsing
- However for a machine with $E_{
 m cm}^{
 m max} < 250 {
 m GeV}$, W/Z separation is not necessary for detectors at CEPC
- Detectors at CEPC
 - + active cooling
 - readout channels
 electronics with even lower power consumption
- For pre-CDR
 - ECAL/HCAL same as ILD
 - explore technologies for cooling

LC PFlow Calorimetry options

★ Various options for high granularity sampling calorimeters...

The progress of ScECAL

- A scintillator-tungsten sandwich sampling calorimeter (ScECAL) is proposed to build a fine-segmented calorimeter in a stable, robust and cost effective way.
- A super-layer is made of a tungsten plate (3 mm thick), scintillator strips (2 mm thick), and a readout/service layer (2 mm thick). The thickness of a super-layer is 7 mm.

▶25 layers is an optimized option for CEPC energy, it is a b a l a n c e b e t w e e n performance and cost.

Energy resolution Vs thickness

A SiPM has a saturation phenomenon due to its finite number of pixels. According to the ILD estimation considering of e+e- \Rightarrow e+e- events at \sqrt{s} =500 GeV , **15000-18000** pixel SiPM is needed. What about CEPC ScEcal? 10000 pixel?

Si-W ECAL for the CEPC

Same mechanical structure as ILD but...

- Rates of machine ≠ ⇒ worst case: ~continuous
- no power-pulsing ⇒ VFE power
 - 27 μW/ch → ~5mW/ch (for 25 ns BX)
 - μ-power pulsing for slower modes ?

Adaptations:

- Reduced number of layers
 - $30 \rightarrow 20$?
- Less electronics channels
 - 0.5 ×0.5 cm² → 1×1 cm²?

Radiations ? → leakage current ✓

cooling at -20°C for CMS-HGCAL?

Performances to be evaluated

- Occupancy!!! → power consumption
- (Simulation on Small ILD version).

Read out: token ring

Exemple of design with cooling

Passive cooling

too much gradient in Si...

Active cooling

- Evaporative CO₂ cooling in thin pipes embbeded in Copper exchange plate
 - for CMS-HGCAL: 33mW/cm²
 - down to 0.6×0.6cm² OK (safety margin of 2)
- → To be modelled for Mokka simulation

Perspectives

Many years of R&D on ECAL (esp. at LLR) for ILC "easily" adaptable to CEPC case Work on design modell has started

- benefit from CMS-HGCAL studies
- expertise on cooling and thermal simulation building-up

Most urgent to assess the performances and the needed granularity:

- Bunch structure of the machine will determine the granularity and performance of the ECAL
 - ⇒ Occupancy studies mandatory to fine tune the electric comsumption
 - Specific R&D needed on VFE ASICs
- Updated GEANT4/Mokka models needed (support from LLR)
- 1 PhD student (Dan Yu) will work both on ILD and CEPC performances

THGEM DHCAL research of RD51

1.00E+00

100

200

- > RD51 research WELL-THGEM DHCAL;
- ➤ The beam studies showed a single-THGEM structure operating at a low gain (~1×10³) can run at 96% efficiency with low discharge probability (10-6 or lower).
- The particular configuration tested, which can still be optimized, had a total thickness of 5.5 mm within the requirement of the ILC-DHCAL.

400

V_{THGEM} (Volt)

700

800

40

900

Structure of THGEM-DHCAL

- three structure can be selected;
 - Double THGEM;
 - Single-THGEM;
 - WELL-THGEM;
- WELL-THGEM is the-best selection.
 - thinner, high gain, lower discharge
- Simplicity, Robustness, is similar to glass RPC
- > Sub-mm spatial resolution, better than glass RPC
- > Few-ns temporal resolution , better than glass RPC
- > 1 MHz/mm² rate capability . better than glass RPC
- > But glass RPC may be cheaper

Including electronics

Structure of GEM-DHCAL

IHEP&UCAS THGEM detector performance study

- ➤ Maximum gain of double THGEM reach to 2×10⁵ (using Neon);
- ➤ Long time stability;
- > High energy resolution;

THGEM detector experiment

Double THGEM cosmic ray test

- Cosmic ray test, measure the detection efficiency of 16cmX16cm THGEM detector;
- ➤ Detection efficiency reach to 94.2% with 4mm drift gap detector.

detection efficiency of cosmic ray

SDHCAL

I.Laktineh

.IPNLyon

OUTLINE

- SDHCAL concept
- SDHCAL-GRPC prototype
- Prototype results
- Present and future development
- Conclusion

Road map in the 2-3 coming years

- Improve on the energy reconstruction using new techniques;
- Improve on simulation (digitizer) and compare hadronic shower models to data;
- Develop PFA techniques to be used to separate close-by hadronic showers;
- -Complete TB (ECAL+SDHCAL+...);
- Publish results;
- -Build few very large GRPC detectors (2-3 m2): gas circulation system, thickness...;
- -Test the new version of electronics (I2C, roll mode..);
- -Design a new ASU capable to read the large GRPC (up to 3 m²);
- Develop a new DIF (low consumption, reduced size, new functionalities);
- -Build a small mechanical prototype to host the few large chambers and test it.

Luminosity measurements

- Requirements:
 - luminosity measurement reaches 0.1%
 - online luminosity monitor

Summary

Benchmark Physics performance of CEPC program has been studied

- Feasibility studies for a detector at CEPC
 - ILD-like design
 - challenging due to short L*, but acceptable
 - cooling is an issue to be studied in future R&D

Pre-CDR is underway