

ICHEP'14: "ICFA supports studies of energy frontier circular colliders and encourages global coordination"

International Organizing Committee (IOC)

Michael Benedikt (CERN) Marica Biagini (INFN-LNF) Alain Blodel (J. of Geneva) Alex Chao (SLAC) wapan Chattopadhyay (Cockcroft Inst.) Weiren Chou (Fermilab, Co-Chair) Jië Gao (IHEP) Stuart Henderson (Fermilab) Andrew Hutton (JLab) Eugene Levichev (BINP) Xinchou Lou (IHEP) Katsunobu Olde (KEK) Qing Qin (IHEP, Co-Chair) Dave Rice (Cornell U.) John Seeman (SLAC) Chuanxiang Tang (Tsinghua U.) Jorg Wenninger (CERW) Frank Zimmermann (CERN)

Local Organizing Committee (LOC)

Huping Geng (IHEP) Yinghua Jia (IHEP) Shuzhen Liu (IHEP) Qian Pan (IHEP) Tongzhou Xu (IHEP, Chair) Shan Zeng (IHEP) Ning Zhao (IHEP)

HF2014

55th ICFA Advanced Beam Dynamics Workshop

Topics

Parameters Optics Interaction region and machine-detector interface Synchrotron radiation and shielding Superconducting RF Injectors and injection Orbit stability and beam instability Polarization Instrumentation and control "Green" Higgs factory

October 9-12, 2014 Hotel Wanda Realm Beijing, China

Http://hf2014.ihep.ac.cn Email: hf2014@ihep.ac.cn Registration Deadline: August 31, 2014

Dec. 2011:

20124⁴ F. Gianotti, LHCP2014

NED (AB) in thimse scale for FCC-ee similar to CLIC (2030++)

Is it the end?

Is it the end?

Certainly not!

- -- Dark matter
- -- Baryon Asymmetry in Universe
- -- Neutrino masses

are experimental proofs that there is more to understand.

or perhaps only right handed 'sterile' neutrinos.....

At higher masses -- or at smaller couplings?

Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)

Forming an international collaboration to study:

- *pp*-collider (*FCC-hh*)
 → defining infrastructure requirements
- ultimate goal: 100 TeV pp collisions
- *e*+*e* collider (*FCC-ee*) as potential intermediate step
- p-e (FCC-he) option
- 80-100 km infrastructure in Geneva area

& e^{\pm} (120 GeV)-p (7, 16 & 50 TeV) collisions FCC-eh) ≥ 50 years of $e^{+}e^{-}$, pp, ep/A physics at highest energies $_{09.10.2014}$

09.10.2014

HF2014 Alain Blondel

Successes of 7th FCC-ee Physics workshop

-1- All top level conveners are nominated and engaged!

congratulations to Patrick Janot and to the conveners!

-2- Software effort is underway

big thanks to Benedikt Hegner et al! (joined since by Colin Bernet)

-3- Nice participation by e+e- Linear collider colleagues

part of FCC-ee mandate. We all agree that the next machine should be an e+e- collider. (Thanks to Simon, Wilson, Sailer, Mele, Heinemeyer, Grojean, Brient, Haddad, etc...) We re-invented the wheel (circle) but we do not need to re-invent the electron!

-4- Complementarity with hadron machine is not just words

ttH coupling is a good example

-5- Reaching out to dark matter, BAU and neutrinos

invisible widths, direct search for rare Z,H, W ... decays

-6- We are discovering the immense potential offered by the high luminosity e+e-Z,W,H,t factory

RECEIVED: September 23, 2013 ACCEPTED: December 25, 2013 PUBLISHED: January 29, 2014

First look at the physics case of TLEP

A lot is published in JHEP: I will insist on new things

The TLEP Design Study Working Group M. Bicer,^a H. Duran Yildiz,^b I. Yildiz,^c G. Coignet,^d M. Delmastro,^d T. Alexopoulos,^e C. Grojean,^f S. Antusch,^g T. Sen,^h H.-J. He,ⁱ K. Potamianos,^j S. Haug,^k A. Moreno,¹ A. Heister,^m V. Sanz,ⁿ G. Gomez-Ceballos,^o M. Klute,^o M. Zanetti,^o L.-T. Wang,^p M. Dam,^q C. Boehm,^r N. Glover,^r F. Krauss,^r A. Lenz,^r M. Syphers,^s C. Leonidopoulos,^t V. Ciulli,^u P. Lenzi,^u G. Sguazzoni,^u M. Antonelli,^v M. Boscolo,^v U. Dosselli,^v O. Frasciello,^v C. Milardi,^v G. Venanzoni,^v M. Zobov,^v J. van der Bij,^w M. de Gruttola,^x D.-W. Kim,^y M. Bachtis,^z A. Butterworth,^z C. Bernet,^z C. Botta,^z F. Carminati,^z A. David,^z L. Deniau,^z D. d'Enterria,^z G. Ganis,^z B. Goddard,^z G. Giudice,^z P. Janot,^z J. M. Jowett,^z C. Lourenço,^z L. Malgeri,^z E. Meschi,^z F. Moortgat,^z P. Musella,^z J. A. Osborne,^z L. Perrozzi,^z M. Pierini,^z L. Rinolfi,^z A. de Roeck,^z J. Rojo,^z G. Roy,^z A. Sciabà,^z A. Valassi,^z C.S. Waaijer,^z J. Wenninger,^z H. Woehri,^z F. Zimmermann,^z A. Blondel,^{aa} M. Koratzinos,^{aa} P. Mermod, aa Y. Onel, B R. Talman, ac E. Castaneda Miranda, ad E. Bulyak, ae D. Porsuk,^{af} D. Kovalskvi,^{ag} S. Padhi,^{ag} P. Faccioli,^{ah} J. R. Ellis,^{ai} M. Campanelli,^{aj} Y. Bai,^{ak} M. Chamizo,^{al} R.B. Appleby,^{am} H. Owen,^{am} H. Maury Cuna,^{an} C. Gracios, ao G. A. Munoz-Hernandez, ao L. Trentadue, ap E. Torrente-Lujan, aq S. Wang.^{ar} D. Bertsche.^{as} A. Gramolin.^{at} V. Telnov.^{at} M. Kado.^{au} P. Petroff.^{au} P. Azzi,^{av} O. Nicrosini,^{aw} F. Piccinini,^{aw} G. Montagna,^{ax} F. Kapusta,^{ay} S. Laplace,^{ay} W. da Silva,^{ay} N. Gizani,^{az} N. Craig,^{ba} T. Han,^{bb} C. Luci,^{bc} B. Mele,^{bc} L. Silvestrini,^{bc} M. Ciuchini,^{bd} R. Cakir,^{be} R. Aleksan,^{bf} F. Couderc,^{bf} S. Ganjour,^{bf} E. Lançon,^{bf} E. Locci, bf P. Schwemling, bf M. Spiro, bf C. Tanguy, bf J. Zinn-Justin, bf S. Moretti, bg M. Kikuchi,^{bh} H. Koiso,^{bh} K. Ohmi,^{bh} K. Oide,^{bh} G. Pauletta,^{bi} R. Ruiz de Austri,^{bj} M. Gouzevitch^{bk} and S. Chattopadhyay^{bl}

HF2014 Alain Blondel

First phase until March 2015:

SCOPING the physics panorama and the main technical issues

Establish collaboration and reach out to interested groups

Get things started.

Experimental Studies: A. Blondel, P. Janot

• Discovery through precision measurements, rare, or invisible processes.

Patri NB Conveners have mission for one year to assemble group and find co-conveners

FCC-ee Phenomenology Studies

Phenomenology Studies: J. Ellis, C. Grojean

Match theory predictions to FCC-ee experimental precisions

This tells the story:

NB: ideas for lumi upgrades:

- -- ILC arxiv:1308.3726 (not in TDR). Upgrade at 250GeV by reconfiguration after 500 GeV running
- -- FCC-ee (crab waist) see Zimmermann's talk

1 Precision measurements -- EW observables Z, W, top -- Higgs boson

2. Search for rare processes -- neutrinos

1. ELECTROWEAK PRECISION TESTS (EWPT)

Due to the non-abelian Gauge theory, Electroweak observables offer sensitivity to electroweakly coupled new particles ...

-- if they are nearby in Energy scale

or

-- if they violate symmetries of the Standard Model (in which case, no «decoupling»)

Higgs boson and top-bottom mass splitting constitute such symmetry violations

2. TESTS OF ELECTROWEAK SYMMETRY BREAKING (EWSB)

Is the H(125) a Higgs boson?

 \rightarrow couplings proportional to mass?

if not: could be more complicated EWSB e.g. more Higgses

→ Higgs supposed to cancel WW scattering anomalies at TeV scale: does this work?

$$\begin{aligned} & \int_{\Sigma} & \int_{\Sigma} \left[\left(A + \Delta \varphi \right) \frac{G_{F}}{24\pi \sqrt{2}} - \frac{m_{Z}^{3}}{(A + \left(\frac{g_{V}}{3R_{0}} \right)^{2} \right) \left(A + \frac{g}{4\pi} \frac{d}{\pi} \right)}{\left(\frac{g_{V}}{2R_{0}} \right)^{2} \left(A + \frac{g}{4\pi} \frac{d}{\pi} \right)} \\ & \left[\mathcal{E}_{3} - S_{in}^{in} \delta_{u}^{aff} c_{u}^{a} \delta_{u}^{aff} = -\frac{\pi \alpha \left(M_{Z}^{2} \right)}{(\overline{2} - G_{F} - m_{Z}^{2}} - \frac{1}{1 + \Delta \varphi} - \frac{1}{1 + \Delta \varphi} - \frac{1}{1 - \frac{\varepsilon_{3}}{c_{0} \cdot \delta_{w}}} \\ & S_{Vb} - \Gamma_{b}^{i} = \left(A + S_{Vb} \right) - \Gamma_{d}^{i} - \left(A - \frac{m_{04} \lambda \cos \omega d_{m_{0}}}{\alpha - m_{0}^{2}/M_{z}^{2}} \right) \\ & \left[\mathcal{E}_{2} - \frac{\pi \alpha \left(M_{Z}^{2} \right)}{(\overline{2} - G_{F} - \Delta in^{2} \theta_{w}^{aff}} + \frac{A}{(A - \varepsilon_{3} + \varepsilon_{2})} \right] \\ & S_{in}^{2} \Theta_{w}^{aff} - i d dulinud \beta \omega \\ & \int_{Vb} \frac{1}{(2 - G_{F} - \Delta in^{2} \theta_{w}^{aff})} = din^{2} \Theta_{w} \frac{eff}{\omega d_{P}} \\ & \int_{Vb} \frac{1}{2} \frac{20/13 \alpha / \pi (m_{top}/m_{Z})^{2}}{(\alpha - \beta x)} \\ & \int_{Vb} \frac{1}{2} \frac{1}{(A - \frac{g_{V}}{2} \varepsilon)} - \frac{A}{(A - \frac{m_{w}}{M_{Z}^{2}})} - \frac{A}{(A - \delta x)} \\ & \int_{Vb} \frac{1}{2} \frac{1}{(A - \frac{g_{V}}{2} \varepsilon)} - \frac{1}{(A - \frac{g_{V}}{2} \varepsilon)} \\ & \int_{Vb} \frac{1}{2} \frac{1}{(A - \frac{g_{V}}{2} \varepsilon)} - \frac{1}{(A - \frac{g_{V}}{2} \varepsilon)} \\ & \int_{Vb} \frac{1}{2} \frac{1}{(A - \frac{g_{V}}{2} \varepsilon)} - \frac{1}{(A - \frac{g_{V}}{2} \varepsilon)} \\ & \int_{Vb} \frac{1}{2} \frac{1}{(A - \frac{g_{V}}{2} \varepsilon)} - \frac{1}{(A - \frac{g_{V}}{2} \varepsilon)} \\ & \int_{Vb} \frac{1}{2} \frac{1}{(A - \frac{g_{V}}{2} \varepsilon)} - \frac{1}{(A - \frac{g_{V}}{2} \varepsilon)} \\ & \int_{Vb} \frac{1}{2} \frac{1}{(A - \frac{g_{V}}{2} \varepsilon)} \\ & \int_{Vb} \frac{1}{(A - \frac{g_{V}}{$$

ie

E [MeV]

Precise meast of E_{beam} by resonant depolarization ~100 keV each time the meast is made

At LEP transverse polarization was achieved routinely at Z peak. instrumental in 10⁻³ measurement of the Z width in 1993 led to prediction of top quark mass (179+- 20 GeV) in March 1994

Polarization in collisions was observed (40% at BBTS = 0.04)

At LEP beam energy spread destroyed polarization above 60 GeV $\sigma_E \propto E^2/\sqrt{\rho} \Rightarrow$ At FCC-ee transverse polarization up to at least 80 GeV to go to higher energies requires spin rotators and siberian snake

FCC-ee: use 'single' bunches to measure the beam energy continuously *no interpolation errors due to tides, ground motion or trains etc...*

<< 100 keV beam energy calibration around Z peak and W pair threshold. $\Delta m_z \sim 0.1 \text{ MeV}, \Delta \Gamma_z \sim 0.1 \text{ MeV}, \Delta m_W \sim 0.5 \text{ MeV}$ 09.10.2014 HF2014 Alain Blondel

A Sample of Essential Quantities:

X	Physics	Present precision		TLEP stat Syst Precision	TLEP key	Challenge
M _z MeV/c2	Input	91187.5 <mark>±2.1</mark>	Z Line shape scan	0.005 MeV <±0.1 MeV	E_cal	QED corrections
Γ_{z} MeV/c2	Δρ (T) (no Δα!)	2495.2 ±2.3	Z Line shape scan	0.008 MeV <±0.1 MeV	E_cal	QED corrections
R _ℓ	α_{s,δ_b}	20.767 ± 0.025	Z Peak	0.0001 ± 0.002 - 0.0002	Statistics	QED corrections
N_{ν}	Unitarity of PMNS, sterile v's	2.984 ±0.008	Z Peak Z+γ(161 GeV)	0.00008 ±0.004 0.001	->lumi meast Statistics	QED corrections to Bhabha scat.
R _b	δ_{b}	0.21629 ±0.00066	Z Peak	0.000003 ±0.000020 - 60	Statistics, small IP	Hemisphere correlations
A _{LR}	Δρ, ε _{3 ,} Δα (Τ, S)	0.1514 ±0.0022	Z peak, polarized	±0.000015	4 bunch scheme	Design experiment
M _W MeV/c2	Δρ, ε _{3 ,} ε _{2,} Δα (T, S, U)	80385 ± <mark>15</mark>	Threshold (161 GeV)	0.3 MeV <1 MeV	E_cal & Statistics	QED corections
m_{top} 09.1 MeV/c2	_{0.20} put	173200 ± <mark>900</mark>	Threshqld _{014 A} scan		E_cal & Statistics	Theory limit at 100 MeV?

350 GeV: the top mass

- Advantage of a very low level of beamstrahlung
- Could potentially reach 10 MeV uncertainty (stat) on m_{top}
 - Comparing ILC and FCCee assuming identical detector performance

From Frank Simon, presented at 7th TEEP-#EC-ee workshop, CERN, June 2014²⁶

The Higgs

Light Higgs is produced by "Higgstrahlung" process close to threshold Production xsection has a maximum of ~200 fb

TLEP: 2. 10³⁵/cm²/s → 400'000 HZ events per year (2 million Higgses in 5 years)

For a Higgs of 125GeV, a centre of mass energy of 240GeV is sufficient → kinematical constraint near threshold for high precision in mass, width, selection purity

Table 1-20. Expected precisions on the Higgs couplings and total width from a constrained 7-parameter fit assuming no non-SM production or decay modes. The fit assumes generation universality ($\kappa_u \equiv \kappa_t = \kappa_c$, $\kappa_d \equiv \kappa_b = \kappa_s$, and $\kappa_\ell \equiv \kappa_\tau = \kappa_\mu$). The ranges shown for LHC and HL-LHC represent the conservative and optimistic scenarios for systematic and theory uncertainties. ILC numbers assume (e^- , e^+) polarizations of (-0.8, 0.3) at 250 and 500 GeV and (-0.8, 0.2) at 1000 GeV. CLIC numbers assume polarizations of (-0.8, 0) for energies above 1 TeV. TLEP numbers assume unpolarized beams.

Facility	LHC	HL-LHC	ILC500	ILC500-up	ILC1000	ILC1000-up	CLIC	TLEP (4 IPs)
$\sqrt{s} \; (\text{GeV})$	14,000	14,000	250/500	250/500	250/500/1000	250/500/1000	350/1400/3000	240/350
$\int \mathcal{L} dt \ (\mathrm{fb}^{-1})$	300/expt	3000/expt	250 + 500	1150 + 1600	250 + 500 + 1000	1150 + 1600 + 2500	500 + 1500 + 2000	10,000+2600
κ_{γ}	5 - 7%	2 - 5%	8.3%	4.4%	3.8%	2.3%	-/5.5/<5.5%	1.45%
κ_g	6 - 8%	3 - 5%	2.0%	1.1%	1.1%	0.67%	3.6/0.79/0.56%	0.79%
κ_W	4 - 6%	2-5%	0.39%	0.21%	0.21%	0.2%	1.5/0.15/0.11%	0.10%
κ_Z	4 - 6%	2 - 4%	0.49%	0.24%	0.50%	0.3%	0.49/0.33/0.24%	0.05%
Ke	6 - 8%	2 - 5%	1.9%	0.98%	1.3%	0.72%	$3.5/1.4/{<}1.3\%$	0.51%
$\kappa_d = \kappa_b$	10-13%	4 - 7%	0.93%	0.60%	0.51%	0.4%	1.7/0.32/0.19%	0.39%
$\kappa_u = \kappa_t$	14 - 15%	7 - 10%	2.5%	1.3%	1.3%	0.9%	3.1/1.0/0.7%	0.69%

many comparisons in Snowmass report.

bottom line: FCC-ee + FCC-hh (for ttH, ttZ and HHH) cover couplings very well! HF2014 Alain Blondel 30

Table 1-16. Uncertainties on coupling scaling factors as determined in a completely model-independent fit for different e^+e^- facilities. Precisions reported in a given column include in the fit all measurements at lower energies at the same facility, and note that the model independence requires the measurement of the recoil HZ process at lower energies. [‡]ILC luminosity upgrade assumes an extended running period on top of the low luminosity program and cannot be directly compared to TLEP and CLIC numbers without accounting for the additional running period. ILC numbers include a 0.5% theory uncertainty. For invisible decays of the Higgs, the number quoted is the 95% confidence upper limit on the branching ratio.

<u>2</u>									
Facility		ILC		ILC(LumiUp)	TLE	P (4 IP)		CLIC	
$\sqrt{s} \; (\text{GeV})$	250	500	1000	250/500/1000	240	350	350	1400	3000
$\int \mathcal{L} dt \ (\mathrm{fb}^{-1})$	250	+500	+1000	$1150 + 1600 + 2500^{\ddagger}$	10000	+2600	500	+1500	+2000
$P(e^{-}, e^{+})$	(-0.8, +0.3)	(-0.8, +0.3)	(-0.8, +0.2)	(same)	(0, 0)	(0, 0)	(-0.8, 0)	(-0.8, 0)	(-0.8, 0)
Γ_H	12%	5.0%	4.6%	2.5%	1.9%	1.0%	9.2%	8.5%	8.4%
κ_{γ}	18%	8.4%	4.0%	2.4%	1.7%	1.5%	-	5.9%	$<\!\!5.9\%$
κ_g	6.4%	2.3%	1.6%	0.9%	1.1%	0.8%	4.1%	2.3%	2.2%
κ_W	4.9%	1.2%	1.2%	0.6%	0.85%	0.19%	2.6%	2.1%	2.1%
κ_Z	1.3%	1.0%	1.0%	0.5%	0.16%	0.15%	2.1%	2.1%	2.1%
κ_{μ}	91%	91%	16%	10%	6.4%	6.2%	-	11%	5.6%
$\kappa_{ au}$	5.8%	2.4%	1.8%	1.0%	0.94%	0.54%	4.0%	2.5%	$<\!\!2.5\%$
κ_c	6.8%	2.8%	1.8%	1.1%	1.0%	0.71%	3.8%	2.4%	2.2%
κ_b	5.3%	1.7%	1.3%	0.8%	0.88%	0.42%	2.8%	2.2%	2.1%
κ_t	-	14%	3.2%	2.0%	-	13%	-	4.5%	$<\!\!4.5\%$
BR_{inv}	0.9%	< 0.9%	< 0.9%	0.4%	0.19%	< 0.19%			
09.10.2014		baseline ILC		width is uniquesting the second secon	ue featu	ire of lep	oton col	ider at 2	40 GeV
					I ILCIS				

For those who like challenges: Higgs s-channel production at $\sqrt{s} = m_{H}$

In theory, with L_{int}~6 ab-1 (4 exps./year) FCC-ee running at H pole mass \rightarrow 10⁴ events per year.

Very difficult because huge background and beam energy spread \sim 10 x $\Gamma_{\rm H}$ limits or signal? monochromators?

Aleksan, D'Enterria, Woijcik

e⁺e⁻ → H x-section: Beam energy spread

- $\sigma(e^+e^-\rightarrow H)$ considered so far is for B.-W. with natural 4.2 MeV width...
- Convolution of increasing Gaussian energy spread of each e[±] beam with Higgs B.W. results on a (Voigtian) effective cross-section decrease:

Search for Rare Processes

the example of right-handed neutrinos

This is determined from the Z line shape scan and dominated by the measurement of the hadronic cross-section at the Z peak maximum →

The dominant systematic error is the theoretical uncertainty on the Bhabha cross-section (0.06%) which represents an error of ± 0.0046 on N_v

Improving on N_v by more than a factor 2 would require a large effort to improve on the Bhabha cross-section calculation!

given the very high luminosity, the following measurement can be performed

above Z peak
(105-160 GeV Ecm)
$$N_{v} = \frac{\frac{\gamma Z(inv)}{\gamma Z \rightarrow ee, \mu\mu}}{\frac{\Gamma_{v}}{\Gamma e, \mu} (SM)}$$

The common γ tag allows cancellation of systematics due to photon selection, luminosity etc. The others are extremely well known due to the availability of O(10¹²) Z decays.

The full sensitivity to the number of neutrinos is restored, and the theory uncertainty on $\frac{\Gamma_{v}}{\Gamma_{e}}$ (*SM*) is very very small.

A good measurement can be made from the data accumulated at the WW threshold where σ (γ Z(inv)) ~4 pb for $|\cos\theta_{\gamma}| < 0.95$

A better point may be 105 GeV (20pb and higher luminosity) may allow ΔN_{ν} =0.0004? 09.10.2014 HF2014 Alain Blondel 36

Γ_Z and Γ_h invisible are the most efficient way to explore SM-mediated DM at colliders

(Giudice)

37

at least 3 pieces are still missing

neutrinos have mass...

and this very probably implies new degrees of freedom
 → Right-Handed, almost «Sterile» (very small couplings) Neutrinos completely unknown masses (meV to ZeV), nearly impossile to find.
 but could perhaps explain all: DM, BAU,v-masses

See-saw in a general way :

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix} \qquad \begin{array}{l} \mathsf{M}_R \neq \mathbf{0} \\ \mathsf{m}_D \neq \mathbf{0} \\ \underline{\mathsf{Dirac} + \mathsf{Majorana}} \\ \mathbf{m}_D \neq \mathbf{0} \\ \underline{\mathsf{Dirac} + \mathsf{Majorana}} \\ \mathbf{m}_D \neq \mathbf{0} \\ \mathbf{m}_D = \frac{1}{2} \begin{bmatrix} (0 + M_R) - \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathcal{M} = \frac{1}{2} \begin{bmatrix} (0 + M_R) - \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathcal{M} = \frac{1}{2} \begin{bmatrix} (0 + M_R) + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} (0 + M_R) + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} (0 + M_R) + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \\ \mathbf{M} = \frac{1}{2} \begin{bmatrix} 0 + M_R + \sqrt{(0 - M_R$$

 $\frac{\mathbf{FEC}}{\mathbf{one} \text{ family see-saw}}$ $\frac{\mathbf{one} \text{ family see-saw}}{\mathbf{\theta} \approx (\mathbf{m}_{\mathrm{D}}/\mathbf{M})}$

 $|\mathbf{U}|^2 \propto \theta^2 \approx \boldsymbol{m}_n / \boldsymbol{m}_N$

 $m_v \approx \frac{m_D^2}{M}$

 $m_{\rm N} \approx {\rm M}$

Manifestations of right handed neutrinos

 $v = vL \cos\theta - N^c_R \sin\theta$ $N = N_R \cos\theta + v_L^c \sin\theta$ what is produced in W, Z decays is: $v_L = v \cos\theta + N \sin\theta$ v = light mass eigenstate N = heavy mass eigenstate $\neq v_L$, active neutrino which couples to weak inter. and $\neq N_R$, which does'nt.

- -- mixing with active neutrinos leads to various observable consequences
 - -- if very light (eV) , possible effect on neutrino oscillations
 - -- if in keV region (dark matter), monochromatic photons from galaxies with $E=m_N/2$
- possibly measurable effects at High Energy

If N is heavy it will decay in the detector (not invisible)

- ➔ PMNS matrix unitarity violation and deficit in Z «invisible» width
- → Higgs and Z visible exotic decays $H \rightarrow v_i \overline{N}_i$ and $Z \rightarrow v_i \overline{N}_i$, $W \rightarrow I_i \overline{N}_i$
- \rightarrow also in charm and b decays via W^{*}-> I_i N_i
- \clubsuit violation of unitarity and lepton universality in Z, W or $\tau\,$ decays
- -- etc... etc...

-- Couplings are small (m_v/m_N) (but who knows?) and generally out of reach of hadron colliders (but this deserves to be revisited for detached vertices @LHC, HL-LHC, FCC-hh)

Direct RH nu's production in Z decays

Production:

$$BR \ (\mathbf{Z}^{0} \to \nu_{m} \overline{\nu}) = BR \ (\mathbf{Z}^{0} \to \nu \overline{\nu}) \ |U|^{2} \ \left(1 - \frac{m_{\nu_{m}}^{2}}{m_{\mathbf{Z}^{0}}^{2}}\right)^{2} \left(1 + \frac{1}{2} \frac{m_{\nu_{m}}^{2}}{m_{\mathbf{Z}^{0}}^{2}}\right)^{2}$$

multiply by 2 for anti neutrino and add contributions of 3 neutrino species (with different $|U|^2$)

Sensitivity assuming zero background

Let's start with the most optimistic scenario, i.e. the maximum region we can probe

This should be considered the maximum sensitivity managing to go to zero background in the region 100um and 5m with $10^{13} Z^0$

Complementarity

Proposed physics topics to be used in the study of synergy/complementarity among experiments at FCC-hh/ee/eh

Subject		ee	hh	he
Higgs Physics	precision studies higher dimension operators composite Higgs rare and exotic decays multiple Higgs production extra Higgs bosons			
Interface with Cosmology	Dark matter baryogenesis right-handed/(almost) sterile neutrinos			
Electroweak Sym. Breaking	WW scattering supersymmetry extra dimensions composite models			
Flavour Changing	rare H,Z,W,top decays lepton flavor violation			
Extensions of the SM	extra vector-like fermions SU(2) _R models leptoquarks			
QCD	Perturbation theory, structure functions Modelling final states			
EW/SM precision issues 09.10.2014 HF202	precision measts (m _z ,m _w ,m _t ,α,α _s (m _z),sin ² θ _w .R _b higher-order EW corrections W,Z triple and quadruple couplings 14tAp (angmalous) couplings charm/bottom flavor studies		45	

The combination of the FCC machines offers outstanding discovery potential by exploration of new domains of -- precision

and

-- direct search, both at high energy and at very small couplings

CONCLUSIONS

- -- FCC-ee physics studies are in construction phase for software, event generators, etc.. no results yet.
 -- contacts with linear collider groups positive
- -- high luminosity FCC-ee offers real opportunities for discovery
 - -- precision measurements
 - -- rare processes (FCNCs, LFV, heavy neutrinos, etc..)
- -- Circular Collider complex (ee, hh, eh) is a fantastic story in the making!

Let's go for it!

HF2014 Alain Blondel

 1964-2013 Higgs boson predicted,

 mass cornered (LEP direct, indirect M_z etc +Tevatron m_t, M_w)

 Higgs Boson discovered (LHC)

 Englert and Higgs get Nobel Prize

(c) Sfyrla

09.10.2014

och@cor

FCC Kick-off Meeting

Kick-off Meeting of the Future Circular Colliders Design Study 12 - 15 February 2014, University of Geneva / Switzerland 341 registered participants

FCC Coordination Team

	Future Circ Study coc	cular Collider ordination, M.	s - Conceptual Benedikt, F. Zir	Design Study nmermann	
Hadron collider D. Schulte	Hadron injectors B. Goddard	e+ e- collider and injectors J. Wenninger	Infrastructure, cost estimates P. Lebrun	Technology High Field Magnets L. Bottura Supercon- ducting RF	Physics and experiments Hadrons A. Ball, F. Gianotti, M. Mangano
	e- p o Integration asp	p tion ects O. Brüning		Cryogenics L. Tavian Specific	e+ e- A. Blondel J. Ellis, P. Janot
energy	Operation efficiency, safety	n aspects, v, environment P	. Collier	Technologies JM. Jimenez	e- p M. Klein
	Planning (Imple	mentation road	map, financial plann, J. Gutleber	anning, reporting	g)

FCC-PHYSics-COordination-group

FCC-ee

Alain Blondel John Ellis Christophe Grojean Patrick Janot

FCC-hh

Austin Ball Fabiola Gianotti Michelangelo Mangano

FCC-he

Max Klein Monica d'Onofrio

Figure 1-3. Measurement precision on κ_W , κ_Z , κ_γ , and κ_g at different facilities. HF2014 Alain Blondel

54

Figure 1-4. Measurement precision on κ_b , κ_τ , and κ_t measured both directly via $t\bar{t}H$ and through global fits at different facilities.

09.10.2014

HF2014 Alain Blondel

Vector boson scattering (VBS) WW \rightarrow WW

SM electroweak symmetry breaking with Higgs essential to preserve VBS cross section unitarity

Same-sign WW VBS production provides attractive S/B at LHC

Experimental Highlights, Young-Kee Kim, University of Chicago

ICHEP 2014, Valencia, July 2-9, 2014

This will remain the reserved domain of the hadron colliders with HL-LHC and FCC-hh!

Inputs:		
$G_F = 1.1663787(6) \times 10^{-5} / GeV^2$	from muon life time	6 10 ⁻⁷
M _z = 91.1876 ± 0.0021 GeV	Z line shape	2 10 -5
$\alpha = 1/137.035999074(44)$	electron g-2	3 10 ⁻¹⁰
EW observables sensitive to new p	hysics:	
M _w = 80.385 ± 0.015	LEP, Tevatron	2 10 -4
$\sin^2 \theta_{W}^{eff} = 0.23153 \pm 0.00016$	WA Z pole asymmetries	7 10-4
Nuisance paramenters:		
Nuisance paramenters: α (M _z) =1/127.944(14)	hadronic corrections	1.1 10-4
Nuisance paramenters: α (M _z) =1/127.944(14)	hadronic corrections to running alpha	1.1 10 -4
Nuisance paramenters: α (M _z) =1/127.944(14) α_{s} (M _z) =0.1187(7)	hadronic corrections to running alpha strong coupling constant	1.1 10⁻⁴ 7 10 ⁻³
Nuisance paramenters: α (M _z) =1/127.944(14) α_{s} (M _z) =0.1187(7) m_{top} = 173.34 ± 0.76 GeV	hadronic corrections to running alpha strong coupling constant from LHC+Tevatron	1.1 10⁻⁴ 7 10 ⁻³ 4 10 ⁻³
Nuisance paramenters: $\alpha (M_z) = 1/127.944(14)$ $\alpha_s (M_z) = 0.1187(7)$ $m_{top} = 173.34 \pm 0.76 \text{ GeV}$	hadronic corrections to running alpha strong coupling constant from LHC+Tevatron combination	1.1 10 ⁻⁴ 7 10 ⁻³ 4 10 ⁻³

Thickness of SM line is given by error on m_z : precise measurements of m_z and m_w

→ Energy calibration by resonnant depolarization

$$\begin{split} \mathcal{L}_{\text{eff}} &= \sum_{n} \frac{\mathcal{C}_{n} \mathbf{V}^{2}}{\Lambda^{2}} \mathcal{O}_{n} \\ \mathcal{O}_{R}^{e} &= (i H^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{e}_{R} \gamma^{\mu} e_{R}) \\ \mathcal{O}_{LL}^{(3)l} &= (\bar{L}_{L} \sigma^{a} \gamma^{\mu} L_{L}) (\bar{L}_{L} \sigma^{a} \gamma_{\mu} L_{L}) \\ \mathcal{O}_{W} &= \frac{i g}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W_{\mu\nu}^{a} \\ \mathcal{O}_{B} &= \frac{i g'}{2} \left(H^{\dagger} D^{\mu} H \right) \partial^{\nu} B_{\mu\mu} \\ \mathcal{O}_{T} &= \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^{2} \end{split}$$

LEP constraints: Λ_{NP} > 10 TeV

After FCC-ee: $\Lambda_{NP} > 100 \text{ TeV}$?

Sensitivity to HF201ৰ\$%/XIaপণাটিfdin\tel

Precision measurements as tests of existence of weakly coupled new physics

Classical' precision measurements
 + flavour physics + Higgs precision measts

a Higher-dimensional operators as relic of new physics ?

• Possible corrections to the standard model

09.10.2014

Theoretical limitations

R. Kogler, Moriond EW 2013

SM predictions (using other input) $\begin{aligned}
M_W &= 80.3593 \pm 0.0005 \ _{m_t} \pm 0.0001 \ _{M_Z} \pm 0.0005? \ _{\Delta\alpha_{had}} \\
 \pm 0.0005 \ _{S} \pm 0.0000 \ _{M_H} \pm 0.0040_{\text{theo}} \\
 = 80.359 \pm 0.011_{\text{tot}} \\
\end{aligned}$

 $\sin^2 \theta_{\text{eff}}^{\ell} = 0.231496 \pm 0.00003 _{n_t} \pm 0.00001 _{I_Z} \pm 0.00003? _{\Delta \alpha_{\text{had}}}$ $0.000002 \pm 0.00001? _{S} \pm 0.00000 _{I_H} \pm 0.000047_{\text{theo}}$ $= 0.23150 \pm 0.00010_{\text{tot}}$

Experimental errors at FCC-ee will be 20-100 times smaller than the present errors.

BUT can be typically 10 -30 times smaller than present level of theory errors

Will require significant theoretical effort and additional measurements!

- Thanks to high FCC-ee luminosity at low energies:
- Preliminary event selections lead to sensitivity at ~ x SM cross-section
- linearity test of $H \rightarrow$ ff couplings extended by doubling the orders of magnitude
- study on-going: monochromators, better selections, etc...

Fig. 3. Surviving event in the monojet search. It has an invariant mass of 300 MeV/c² and a missing p_t of 6 GeV/c and is probably an $e^+e^- \rightarrow e^+e^-\nu\overline{\nu}$ interaction

Fig. 4. Efficiency of the monojet search (Sect. 3) and the ace HF201 starts (Sect. 4) Bio from the shows the afficiency of the har campaignee shows

Search for heavy neutral leptons

search e⁺ e⁻ \rightarrow v N N \rightarrow v(γ /Z)^{*} \rightarrow monojet

> Find: one event in 4x10⁶Z:

FCC	son	ne REFERENCES		
PHYSICAL REVIEW D	VOLUME 29	9, NUMBER 11	1 JUNE 1984	
	Extending limits on Michae	neutral heavy leptons	PUBLISHED FOR SISSA BY RECEIVED: Sept ACCEPTED: Deo PUBLISHED: Jac	
FLAVOUR(267104)-ERC-23	Department of Physics, Syracuse U TUM-HEP 850/12 SISSA 25/2	Jniversity, Syracuse, New York 13 2012/EP CFTP/12-013	B2. First look at the physics case of TLEP	6176
arxiv:1208.36 Higgs	54 Decays in the Low Sc	ale EA	The TLEP Design Study Working Group M. Bicer, ^a H. Duran Yildiz, ^b I. Yildiz, ^c G. Coignet, ^d M. Delmastro, ^d T. A C. Grojean, ^f S. Antusch, ^g T. Sen, ^h HJ. He, ⁱ K. Potamianos, ^f S. Haug, ^k A. Moreno, ^f A. Heister, ^m V. Sanz, ⁿ G. Gomez-Ceballos, ^c M. Klute, ^c M. Z	exopoulos, ^e
$\mathbf{T}\mathbf{y}$ C. Garcia Cely ^{a)} , J	pe I See-Saw Model A. Ibarra ^{a)} , E. Molinaro ^{b)} and S. T.	Petcov ^{c,d)} 1	LT. Wang, ^p M. Dam, ^q C. Boehm, ^r N. Glover, ^r F. Krauss, ^r A. Lenz, ^r M. CERN	Syphers.* I-PPE/96-195 18 December 1996
theories of and mixing The Bole of Steri	s with ordinary neutrinos of these le	nd	for Neutral Heavy Lep Produced in Z Decays	\mathbf{p} tons
Alexey Boyarsky* [†] , Ole	Astrophysics g Ruchayskiy [‡] and Mikhail Shaposhni	FCC design study	DELPHI Collaboration and FCC-ee <u>http://cern.ch</u>	/fcc-ee
The ν MSM, Dark Ma	atter and Neutrino Masses	and presentatior http://indico.cer	ns at <i>FCC-ee physics worksh</i> n.ch/event/313708/	юр
Takehiko Asaka, Steve Bla Institut do Théorie Phys Lett B631:151-	nchet, and Mikhail Shaposhnikov	Preprint typeset in JHEP style - HYPEF FERMILAB-PUB-08-086-	T, NSF-KITP-08-54, MADPH-06-1466, DCPT/07/198, IPPP	/07/99
arXiv:hep-ph/05030	190,290,5 Datsunne, Swazena 065 ⁰⁰⁵⁾	The Search for H	leavy Majorana Neutrinos	
talks by Maurizio Roberto Tenchini	Pierini (BSM), Manq (Top & Precision) 40	i Ruan (Higgs)	n ^{2,3,4} , Silvia Pascoli ⁵ , Bin Zhang ⁴ *	
posters tonight at	Future accelerator s	Session		

SHIP

TLEP expected sensitivity to HNL (IH) 10-6 10-7 BAU 2 10⁸ + 1 10⁸ + 1 + 1 10⁹ + 2 + 1 10⁹ + 2 + 2 10¹⁹ + 2 BBN 10-10 Seesaw 10-11 10⁻¹² 2×10⁻¹ 2 3 4 5 6 7 8 10 HNL mass (GeV) 20 30 40 1

Elena Graverini, Nicola Serra