Beamstrahlung and energy acceptance

K. Ohmi (KEK) HF2014, Beijing Oct 9-12, 2014

Thanks to Y. Zhang and D. Shatilov

Introduction

- Beamstrahlung is synchrotron orbit radiation during the beam-beam interaction.
- Energy loss due to beamstrahlung results a tail of momentum spread and bunch length.
- The bunch lengthening make worse the beambeam performance.
- The energy tail results beam lifetime shortening: i.e. a large momentum acceptance is required.
- We estimate longitudinal beam tail and lifetime using simulations.

Beamstrahlung

Synchrotron radiation emitted by the beambeam interaction.

• Beam-beam force $\Delta p_{x} = \frac{Nr_{e}}{\gamma} \frac{x}{\sigma_{x} + \sigma_{y})\sigma_{x}} \quad \Delta p_{y} = \frac{Nr_{e}}{\gamma} \frac{y}{\sigma_{x} + \sigma_{y})\sigma_{y}}$ • Typical $x \sim \sigma_{x} \qquad y \sim \sigma_{y}$ $\Delta p_{x,y} \approx \frac{Nr_{e}}{\gamma} \frac{1}{\sigma_{x} + \sigma_{y}}$

 $\sqrt{2\pi\sigma_{z}}$

- Interaction length of collision $\Delta s = \sqrt{\pi/2}\sigma_z$
- Curvature of the beam traiectory $\frac{1}{\rho_{xy}} = \frac{\Delta p_{x,y}}{\Delta s} = \frac{4Nr_e}{\sqrt{2\pi\gamma}} \frac{1}{(\sigma_x + \sigma_y)\sigma_z}$

Synchrotron radiation

- Number of photon $N_{\gamma} = \frac{5\sqrt{3}\alpha\gamma}{6\rho}\Delta s$
- Characteristic energy $u_{c} = \frac{3\hbar c\gamma^{3}}{\frac{1}{\rho_{xy}}}$ $\frac{1}{\sqrt{2\pi\gamma}} = \frac{4Nr_{e}}{\sqrt{2\pi\gamma}} \frac{1}{(\sigma_{x} + \sigma_{y})\sigma_{z}}$
- ρ =23.5m << ρ_{bend} = 6,094m (CEPC)
- P=19.7m << ρ_{bend} = 11,000m (TLEP)
- $u_c = 164 \text{ MeV(CEPC)}$ 194 MeV(TLEP-H) << E_0 • $N_v = 0.21(CEPC)$ 0.092(TLEP-H) <<1

Synchrotron radiation

S(@/@c)

• photon number spectrum

$$\frac{dn_{\gamma}(\omega)}{d\omega} = \frac{\sqrt{3}\alpha\gamma\Delta s}{2\pi\rho\omega_c}S(\omega/\omega_c)$$

$$S(\xi) = \int_{\xi}^{\infty} K_{5/3}(y) dy.$$

• Power spectrum

$$P(\omega) = \hbar \omega \frac{dn_{\gamma}(\omega)}{d\omega}$$
$$= \frac{\sqrt{3}\alpha \hbar \gamma \Delta s}{2\pi \rho} \Delta s \frac{\omega}{\omega_c} S(\omega/\omega_c)$$

Energy loss due to beamstrahlung

Averaged photon energy

 $\langle u \rangle = \frac{\int \hbar \omega n_{\gamma}(\omega) d\omega}{\int n_{\gamma}(\omega) d\omega} = \frac{3}{5\pi} \hbar \omega_c \int_0^\infty \xi S(\xi) d\xi = \frac{8}{15\sqrt{3}} \hbar \omega_c$ $\langle \Delta E \rangle = n_{\gamma} \langle u \rangle \Delta s = \frac{2\hbar\alpha c\gamma^{\tt T}}{3\rho^2}$ $\frac{\langle \Delta E \rangle}{E_0} = \frac{16\sqrt{\pi/2}}{3\pi} r_e^3 \gamma \left(\frac{N_e}{\sigma_z (\sigma_x + \sigma_y)} \right) \sigma_z$ $\langle d\delta_{BS} \rangle = \frac{\langle \Delta E \rangle}{E_0} = 0.864 r_e^3 \gamma \left(\frac{N_e}{\sigma_z (\sigma_x + \sigma_y)} \right)^2 \sigma_z$

Diffusion due to beamstrahlung

Diffusion due to photon energy deviation

$$\langle u^2 \rangle = \frac{\int \hbar^2 \omega^2 n_\gamma(\omega) d\omega}{\int n\gamma(\omega) d\omega} = \frac{3}{5\pi} (\hbar\omega_c)^2 \int_0^\infty \xi^2 S(\xi) d\xi = \frac{11}{27} (\hbar\omega_c)^2$$
$$\frac{\langle \Delta E^2 \rangle}{E_0^2} = \frac{n_\gamma \langle u^2 \rangle}{E_0^2} = n_\gamma \frac{11}{27} (\hbar\omega_c)^2 = \frac{275}{64n_\gamma} \left(\frac{\langle \Delta E \rangle}{E_0}\right)^2$$
$$\text{Diffusion due to } n_\gamma < 1$$

Combined and integrate realistic particle orbit.

$$\sqrt{\langle d\delta_{BS}^2 \rangle} = \langle d\delta_{BS} \rangle \sqrt{0.1639 + \frac{5.129}{n_{\gamma}}}$$
$$\sqrt{\langle d\delta_{BS}^2 \rangle} = \langle d\delta_{BS} \rangle \sqrt{0.333 + \frac{4.583}{n_{\gamma}}}.$$

Equilibrium bunch length

 The diffusion is accumulated during radiation damping time, and equilibrium spread is achieved.

$$\sigma_{\delta,BS} = \frac{1}{2} \sqrt{\tau_z N_{IP}} \sqrt{\langle d\delta_{BS}^2 \rangle}$$
$$\sigma_{\delta,tot} = \sqrt{\sigma_{\delta,SR}^2 + \sigma_{\delta,BS}^2}$$

$$\sigma_{z,tot} = \sigma_{z,SR} \sigma_{\delta,tot} / \sigma_{\delta,SR}$$

• Self-consistent solution for both beams.

Schematic view of the simulation

- Calculate trajectory interacting with colliding beam.
- Particles emit synchrotron radiation due to the momentum kick dp/ds=1/ρ.

ds =	$\frac{z_i - z_{i+1}}{2}$	1	$dp_{x,y}$
	2	$ ho_{x,y}$ —	ds

Beamstrahlung spectrum
 γ energy spectrum, N_e=10⁷, N_γ~2x10⁶

N (arb.)

Evolution of energy distribution in First 10 turn (20 interactions)

Energy deviation is accumulated lower energy part.

First 10 turn (20 interactions)

• With Synchrotron motion

- Both z, δ distribution blow up
- Energy deviation is less accumulated.

Equilibrium distribution-z

• After 1000 turn (1000/80=12 damping time)

• Tail is enhanced a little for K Bessel formula.

$$\sigma_z = 2.1 \text{mm}$$

Equilibrium distribution- $\boldsymbol{\delta}$

- 1000 turn=12 damping time
- Equilibrium distribution $\delta = \Delta p/p_0$

Lifetime M. Sands

• Distribution function in phase space

$$f(J_i) = \frac{1}{\varepsilon_i} \exp(-J_i/\varepsilon_i) \qquad \int_0^\infty dJ_i f(J_i) = 1$$

• Damping of amplitude

• Loss per turn equals to density times damping
at A.
$$dN$$
 N dJ_i $2A_iN$

$$\frac{dN}{dt} = -\frac{N}{\tau_l} = -Nf(A_i) \left. \frac{dJ_i}{dt} \right|_{J_i = A_i} = -\frac{2A_iN}{\tau_i}f(A_i)$$

• Lifetime for Gaussian distribution

$$\tau_l = \frac{\tau_i}{2A_i f(A_i)} = \frac{\tau_i}{2} \frac{\varepsilon_i}{A_i} \exp(A_i/\varepsilon) \qquad A_i = \frac{\beta_i x_{max}^2}{2}$$

Using variabl
$$r_i = \sqrt{2J_i/\varepsilon_i}$$

- Distribution function g(r) is given numerically
- Life time for g(r)

Very long term tracking using BBWS

- Self consistent σ_z , averaged every 1000 turns.
- $n_p = 100$, $n_{turn} = 1 \times 10^8 / 2$ turns. $n_{turn} T_0 = 2.3$ hours.
- Distribution is accumulated every ½ turn after 10000/2 turns, n_pxn_{taccum}=9.999x10⁹.

• 48 bit random number generators are used and compared. (No difference from 32bit)

z tail distribution and lifetime (CEPC)

N/N₀

30-40min for δ_{max} =1.8%

TLEP Energy tail distribution

Lifetime estimation (TLEP)

Lifetime 27 min (H) and 0.39 min (t) at $\delta_{\text{max}} \text{=} 1.5\%$

Beam loss simulation

Setting 1.5% aperture, survived particles is counted. Agree with the estimation from the damping flow.

Analytic formula (Telnov, Bogomyagkov)

$ au_{ m bs,Telno}$	$f_{\rm W} = \frac{10}{f_0} \frac{4\sqrt{\pi}}{3} \sqrt{\frac{\eta}{\alpha r_e}}$	$\tau_{bs} = \frac{1}{f_0} \frac{4\sqrt{\pi}}{3} \sqrt{\frac{\eta}{\alpha r_e}} \exp\left(\frac{2}{3} \frac{\eta \alpha}{r_e \gamma^2} \times \frac{\gamma \sigma_x \sigma_z}{\sqrt{2} r_e N_p}\right)$			
/	$\times \exp\left(\frac{2}{3}\frac{\eta\alpha}{r_e\gamma^2} \times \frac{\gamma\sigma_x\sigma_z}{2r_eN_p}\right)\frac{2}{\sigma_z}$	$\frac{2}{\gamma^2} \left(\frac{\gamma \sigma_x \sigma_z}{2r_e N_p} \right)$	$\times \frac{\sqrt{2}}{\sqrt{\pi}\sigma_z\gamma^2} \left(\frac{1}{\sqrt{2}}\right)$	$\frac{\gamma \sigma_x \sigma_z}{\sqrt{2} r_e N_p} \bigg)^{3/2},$	
1 is necessary $\eta = \delta_{max} = 1.5\%$					
Table 2: Expected and simulated BS lifetime.					
	$\tau_{\rm BS}$ [min]	TLEP-H	TLEP-t	CepC	
	analytical [9]	310	3.6	113	
analytical [8]		1400	3.3	619	
weak-strong (loss)		26	0.3	5.5	
	weak-strong (distr.)	33	0.3	~5	

- The lifetime in simulations is shorter than analytical estimates.
- Better agreement for considering Dynamic beta.
- Detailed analysis is done by M. Koratzinos.

Summary

- Beamstrahlung in TLEP and CEPC has been treated using Gaussian and Realistic K Bessel formula.
- Longitudinal beam tail due to beamstrahlung is enhanced. It is essential for lifetime.
- Long term tracking including beamstrahlung has been done using weak strong simulation. For only longitudinal, medium term and many particle tracking is available.
- Beam lifetime was evaluated by the longitudinal and transverse distributions.
- The lifetime estimated by the damping flow agree with beam loss simulations.
- $\Delta \delta_{max}$ >1.8%(CEPC and TLEP-H) and >2.6% (TLEP-t) are required in present beam parameter.

Summary

- Beamstrahlung in TLEP and CEPC has been treated using Gaussian and Realistic K Bessel formula.
- Longitudinal beam tail due to beamstrahlung is enhanced. It is essential for lifetime.
- Long term tracking including beamstrahlung has been done using weak strong simulation. For only longitudinal, medium term and many particle tracking is available.
- Beam lifetime was evaluated by the longitudinal and transverse distributions.
- The lifetime estimated by the damping flow agree with beam loss simulations.
- $\Delta \delta_{max}$ >1.8%(CEPC and TLEP-H) and >2.6% (TLEP-t) are required in present beam parameter.

Nest step

- Dynamic beta, which reduce σ_x , enhances energy tail. Optimize β_x .
- Precise eradiation excitation matrix to estimate correct dynamic beta/emittance.
- Optimize β_y to increase momentum acceptance.

Thank you for your attension

Parameters for CEPC

- C=53.6km, E=120 GeV
- $(v_x, v_y, v_s) = (0.54, 0.61, 0.103) \times 2$
- $(\varepsilon_x, \varepsilon_y, \varepsilon_s) = (6.79e-9, 2.04e-11, 2.938e-6) [m]$
- $(\beta_x^*, \beta_y^*, \beta_s) = (0.8, 0.0012, 1.74)$ [m]
- $(\sigma_z, \sigma_{\delta}) = (2.26(2.58) \text{ mm}, 0.13(0.15)\%)$
- $(\tau_x, \tau_y, \tau_s) = (159.4, 159.4, 79.7)/2$ [turn]
- N_e=3.71x10¹¹, N_b=50
- NIP=2
- α_p=4.15e-5
- Nslice=20,ne=10000

Parameters for TLEP-H

- C=100km, E=120 GeV
- $(v_x, v_y, v_s) = (0.54, 0.61, 0.024) \times 4$
- $(\varepsilon_x, \varepsilon_y, \varepsilon_s) = (0.94e-9, 1.9e-12, 0.81e-6) [m]$
- $(\beta_x^*, \beta_y^*, \beta_s) = (0.5, 0.001, 0.81)$ [m]
- $(\sigma_z, \sigma_{\delta}) = (0.81(1.17) \text{ mm}, 0.10(0.14)\%)$, beam strahlung
- $(\tau_x, \tau_y, \tau_s) = (568, 568, 284)/4$ [turn]
- $N_e = 0.46 \times 10^{11}$, $N_b = 1360$
- NIP=4
- α_p=0.5e-5
- Nslice=20,ne=10000

Lifetime formula K.Ohmi, Sep. 2 2014

• Telnov formula, PRL110, 114801(2013)

$$\omega_{c} = \frac{3\gamma_{e}^{3}c}{2\rho} \quad \rho = \frac{\sqrt{2\pi}\gamma_{e}(\sigma_{x} + \sigma_{y})\sigma_{z}}{4N_{e}r_{e}}$$
$$u = \frac{\delta_{max}E_{0}}{\hbar\omega_{c}} \quad n_{col} = \frac{10\sqrt{6}r_{e}\gamma_{e}u^{3/2}}{\alpha_{fsc}^{2}\delta_{max}\sigma_{z}/2}e^{u}$$
$$\tau = n_{col}\frac{C}{c}$$

Lifetime

• H

- $-\delta_{max}$ =0.015, σ_z=1.2mm, σ_x=21.7 μm, N_b=0.46x10¹¹, τ=99min
- Dynamic beta bx 0.5m->0.345m, σ_x =18.0 μ m, τ =16min
- t
 - $-\delta_{max}$ =0.015, σ_z=1.6mm, σ_x=44.7 μm, N_b=1.4x10¹¹, τ=2.9min
 - Dynamic beta bx 1m->0.69m, σ_x =37 µm, τ =0.77min

Analytic formula (Telnov, Bogomyagkov)

$\tau_{\rm bs,Telnov} = \frac{10}{f_0} \frac{4\sqrt{\pi}}{3} \sqrt{\frac{\eta}{\alpha r_e}}$			$\tau_{bs} = \frac{1}{f_0} \frac{4\sqrt{\pi}}{3} \sqrt{\frac{\eta}{\alpha r_e}} \exp\left(\frac{2}{3} \frac{\eta \alpha}{r_e \gamma^2} \times \frac{\gamma \sigma_x \sigma_z}{\sqrt{2} r_e N_p}\right)$			
	$\times \exp\left(\frac{2}{3}\frac{\eta\alpha}{r_e\gamma^2}\times\frac{\gamma\sigma_x}{2r_et}\right)$	$\left(\frac{\sigma_z}{N_p}\right) \frac{2}{\sigma_z \gamma}$	$\overline{2} \left(\frac{\gamma \sigma_x \sigma_z}{2r_e N_p} \right)$	$\times \frac{\sqrt{2}}{\sqrt{\pi}\sigma_z\gamma^2} \left(\frac{1}{\sqrt{2}}\right)$	$\frac{\gamma \sigma_x \sigma_z}{\sqrt{2} r_e N_p} \bigg)^{3/2},$	
1 is necessary $\eta = \delta_{max} = 1.5\%$						
Table 2: Expected and simulated BS lifetime.						
	$\tau_{\rm BS}$ [min]		TLEP-H	TLEP-t	CepC	
	analytical [9] [*]		310	3.6	113	
analytical [8]		1400	3.3	619		
weak-strong (loss)		26	0.3	5.5		
	weak-strong (di	str.)	33	0.3	~5	

• The lifetime in simulations is shorter than analytical estimates.