

Overview of the CEPC Accelerator

Qing Qin for the accelerator team Institute of High Energy Physics, CAS

中國科學院為能物現為完所 Institute of High Energy Physics

Acknowledgement

- IHEP: H.P. Geng, Y. Zhang, Y.Y. Guo, N. Wang, Y.W. Wang, J. Gao, D. Wang, S. Bai, X.H. Cui, G. Xu, M. Xiao, C. Zhang, G.X. Pei, X.P. Li, J.Y. Tang, etc.
- FNAL: W. Chou
- SLAC: Y.H. Cai
- KEK: K. Ohmi, Y. Funakoshi, K. Oide, etc.
- Cornell U.: R. Talman
- CERN: F. Zimmermann, etc.
- Jlab: Y.H. Zhang

Outlines

- Introduction
- Main parameters and layout
- Accelerator physics issues
- Technical systems
- Plan in the near future
- Summary

1. Introduction

Motivations

- Higgs Boson was discovered two years ago, with a lower energy than expected.
- Circular collider seems more mature and promising
- More high energy physics hide in a possible pp collider converted by electron machine

Forthcoming Discoveries in Particle Physics

Торіс	Crucial measurement	Significance
WIMP	Existence	Dark Mater
Higgs boson	M ~125 GeV	Confirm spontaneous symmetry breaking in gauge theory
Super-symmetric particles	Existence, M > 1 TeV	Hope of understanding gravity
Technicolour particles	Existence, M > TeV?	Dynamic symmetry breaking, Composite Higgs
Gravitational waves (Gravitons)	Existence	Support general relativity
Magnetic monopole	Existence, mass, electric charge	Electric and magnetic charge symmetry predicted by Dirac. Structure of gauge field configuration
Free quarks	Existence, fractional charge	Would confuse all current prejudice
Neutrino mass and oscillation	M < 1 eV	Structure of GUTs. Eventual fate of the universe
Exotic hadron Glueball	M _g = 1-2 GeV, M _{exotic, c} ~4 GeV Existence	Understand QCD

Possible Higgs Factories

中國科學院為能物跟獅完所 Institute of High Energy Physics

中國科學院為能物理研究所 Institute of High Energy Physics

♦ LEP3

◆ TLEP – FCC (hh, ee, ...)

Super-Tristan

FNAL Site-filler

♦ IHEP: CEPC+SppC

 A CEPC (phase I) + SppC (phase II) was proposed in IHEP, Sept. 2012

中國科學院為能物現研究所 Institute of High Energy Physics

• Possible site: Qinhuangdao, Hebei province

Luminosity requirement

- e⁻-e⁺ collider:
 - Higgs produced above the ZH threshold
 - Collide at E_{cm} ~240GeV, σ ~ 200 fb
 - Need 20000 events/yr/IP, i.e., 100 fb⁻¹/y -> L = 10³⁴cm⁻²s⁻¹
- Muon collider
 - Higgs produced from s-channel
 - σ **~ 40 pb**
 - 20000 Higgs/yr -> L = 5*10³¹cm⁻²s⁻¹

中國科學院為能物理研究所 Institute of High Energy Physics

Design Goal

Possible circular collider

- In the existing tunnel:
 - LEP3, together w/LHC (27 km)
- Using lab field:
 - Fermilab Site Filler (16 km)
- Others:
 - DLEP (53 km), TLEP (80 km)
 - Super-Tristan (40, 60 km)
 - IHEP: CEPC+SppC (50, 70 km)
 - Very Large Lepton Collider (233 km in VLHC tunnel)
 - etc.

中國科學院為能物理研究所 Institute of High Energy Physics

• Circumference

- Determined by SppC beam energy
- Assume Ecm=70-100TeV for new physics

Ec.m. (TeV)	В (Т)	C (km)
70	12	~80
70	20	~50

- Beam power
 - 50 MW/beam, synchrotron radiation (51.7MW w/ FFS)
- Luminosity
 - $1 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} / \text{IP}$

中國科學院為能物躍為完所 Institute of High Energy Physics

400

 \bigcirc

100

1203

 3 machines in one tunnel - CEPC & booster - SppC • Crosstalk of CEPC O6500 straights & SppC's 2000 detector • Layout of CEPC Ø1500 determined by 1295 **SppC** layout

• Beam current:

$$P[GW] = C_{\gamma} \frac{E[GeV]^4}{\rho[m]} I[A]$$
$$C_{\gamma} = 88.5 \times 10^{-6} \frac{m}{GeV^3}$$

$$P_{sr} = 51.7 \text{MW} \implies I = k_b I_b = 16.6 \text{mA}$$

• Take filling factor of the ring = 0.7 $\implies \rho = 6.1$ km

中國科學院為能物昭湖完施 Institute of High Energy Physics

Beamstrahlung^[*]

S

• Beamstrahlung fractional energy spread:

$$\delta_{BS} = \frac{2r_e^3 N_e^2 \gamma F}{3\sigma_x \sigma_y \sigma_z} \qquad R = \frac{\sigma_x}{\sigma_y}, F(R=1) = 0.325, F(R>>1) \approx \frac{1.3}{R}$$

• Beamstrahlung bending radius : $\rho \approx \frac{\gamma o_x o_z}{2r}$

$$\frac{E_c}{E_0} = \frac{3\gamma r_e^2 N}{\alpha \sigma_x \sigma_z} \qquad u = \frac{\eta E_0}{E_c} \qquad n_{col} \approx 10 \frac{\sqrt{6\pi} r_e \gamma u^{3/2}}{\alpha^2 \eta l} e^u$$

the collision length $l \approx \sigma_z / 2$ for head-on and $l \approx \beta_y / 2$ for crab waist collision

[*] V.I. Telnov, PRL 110, 114801 (2013).

中國科學院為能物現研究所 Institute of High Energy Physics

Luminosity & coupling coefficient

$$L_{\text{limit}} = 0.4565 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} \frac{\rho(\text{km}) P_{\text{SR}} (100 \text{MW}) \sqrt{\delta_{\text{BS}} (0.1\%)}}{(E/100 \text{GeV})^{4.5} \sqrt{\varepsilon_y} (\text{nm})}$$
$$= 0.4565 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} \frac{\rho(\text{km}) P_{\text{SR}} (100 \text{MW})}{(E/100 \text{GeV})^{4.5}} \cdot \frac{\sqrt{\delta_{\text{BS}} (0.1\%)}}{\sqrt{r \varepsilon_x} (\text{nm})}$$

 Take P_{SR} = 50MW, E = 120GeV, ε_x = 6.12nm, r = 0.003 (empirical value)

Bunch number, particle number, emittance, etc., will be discussed in other talks in this workshop.

中國科學院為能物現研究所 Institute of High Energy Physics

RF frequency and voltage

- Energy spread and acceptance due to SR $\sigma_e = \gamma \sqrt{\frac{C_q}{J_c \rho}}$ $\eta = \sqrt{\frac{U_0}{\pi \alpha_p h E}} F_q$
- Synchrotron tune and bunch length: $V_s = \sqrt{-\frac{\alpha_p h V_{rf} cos \varphi_s}{2\pi E}}$ $\sigma_z = \frac{\alpha_p R \sigma_{e0}}{V_s}$
- RF station distribute around the ring due to energy saw tooth
- Lifetime from beamstrahlung:

$$E_{cb} = \frac{3\gamma r_e^2 N_e E}{\alpha \sigma_x \sigma_z}, \ u = \frac{\sigma_e E}{E_{cb}}, \ n_{col} = \frac{20\sqrt{6\pi} r_e \gamma u^{3/2}}{\alpha^2 \sigma_e \sigma_z} e^u$$
$$\tau = n_{col} T_0$$

中國科學院為能物跟納完所 Institute of High Energy Physics

Main parameters for CEPC

Parameter	Unit	Value	Parameter	Unit	Value
Beam energy [E]	GeV	120	Circumference [C]	m	54752
Number of IP[N _{IP}]		2	SR loss/turn [U ₀]	GeV	3.11
Bunch number/beam[n _B]		50	Bunch population [Ne]		3.79E+11
SR power/beam [P]	MW	51.7	Beam current [I]	mA	16.6
Bending radius [r]	m	6094	momentum compaction $[\alpha_p]$		3.36E-05
Revolution period [T ₀]	S	1.83E-04	Revolution frequency [f ₀]	Hz	5475.46
emittance (x/y)	nm	6.12/0.018	βı _P (x/y)	mm	800/1.2
Transverse size (x/y)	mm	69.97/0.15	ξ _{x,γ} /IP		0.118/0.083
Beam length SR [$\sigma_{s.SR}$]	mm	2.14	Beam length total [S _{s.tot}]	mm	2.88
Lifetime due to Beamstrahlung	min	47	Lifetime rad. Bhabha $[\tau_L]$	min	52
RF voltage [V _{rf}]	GV	6.87	RF frequency [f _{rf}]	MHz	650
Harmonic number [h]		118800	Synchrotron oscillation tune $[v_s]$		0.18
Energy acceptance RF [h]	%	5.99	Damping partition number [Je]		2
Energy spread SR [$\sigma_{d.SR}$]	%	0.132	Energy spread BS [_{Od.BS}]	%	0.119
Energy spread total $[\sigma_{d,tot}]$	%	0.177	n _y		0.23
Transverse damping time	turns	78	Longitudinal damping time $[\tau_e]$	turns	39
Hourglass factor	F _h	0.658	Luminosity /IP[L]	cm ⁻² s ⁻¹	1.98E+34
			41	则押子	之的版例此

Institute of High Energy Physics

3. Accelerator Physics Issues

• Lattice Design

In current design:

- •Circumference: 54.7 km
- 8 arcs
- 8 straight sections
- 2 IRs
- Filling factor: ~0.7
- 8 RF sessions

Not fixed yet !

Lattice of arc sections

- Length of FODO cell: 47.2m
- Phase advance of FODO cells: 60/60 degrees

β (m)

- Dispersion suppressor on each side of every arc
- Length: 92.4m

More details on lattice design, see Geng's talk.

Dynamic aperture (w/o FFS)

- 2 sextupole families are applied to correct chromaticity
- dynamic aperture: ~60 σ_x in hori. ~60 σ_v in vert.
- ±2% momentum deviation

Pretzel scheme (1)

- No orbit in RF section to avoid beam instability and HOM in the cavity
- > One pair of electrostatic separators for each arc

Pretzel scheme (2)

- IP2 and IP4 are parasitic crossing points, but have to avoid collision
- Two more pairs of electrostatic separators for IP2 and IP4

FFS in CEPC

- Functions of Interaction Region (IR) optics
 - Provide very small beta function to achieve very small beam size: β_v *=1.2mm, σ_v *=0.16um, for CEPC
 - Correct large chromaticity due to small beta function: W~L*/ β_{v}^{*}

Dynamic aperture with FFS

More details, ref to Y.W. Wang's talk

中國科學院為能物招為完施 Institute of High Energy Physics

Beamstrahlung OFF

Tune scan (studied with Yuan Zhang's code)

S

Beamstrahlung ON

Working point

vx

湖宪所

Physics

Working points from beam-beam simulation (.54, .61)

X

• Beam Lifetime vs dynamic aperture

Collective effects

	R [kΩ]	L [nH]	k _{loss} [V/pC]	$ Z_{//}/n _{eff}[\Omega]$
Resistive wall (Al)	9.5	124.4	301.3	0.0044
RF cavities (N=400)	28.1		893.9	
Total	37.6	124.4	1195.2	0.0044

 The longitudinal wake is fitted with the analytical model

$$W(s) = -Rc\lambda(s) - Lc^2\lambda'(s)$$

- The loss is dominated by the RF cavities.
- The imaginary part of the RF cavities is capacitive.

中國科學院為能物理研究所 Institute of High Energy 32 iysics

Longitudinal wake at nominal bunch length (σ_z =2.66mm)

Bunch lengthening

- Steady-state bunch shape is obtained by Haissinski equation
- Bunch is shortened due to the capacitive impedance of the RF cavity(only resistive wall and RF cavity considered)

Pseudo-Green function wake (σ_z =0.5mm)

Steady-state bunch shape

中國科學院為能物現研究所 Institute of High Energy Physics

- Bunch lengthening with scaled SuperKEKB's geometry wake
 - Scaled LER wake+RW+RF (bunch is lengthened by 10-20%)

Scaled HER wake+RW+RF (bunch is lengthened by 18.5%)

The scaling factor is Cir (CEPC)/Cir(SuperKEKB)=54.7e3/3016.315

- CSR, TMCI are not serious with very rough estimate
- Ion instability, ECI, will be less affected due to the other counter-rotating beam in the same vacuum chamber
- Due to pretzel scheme, when a beam cross a resonator (eg. RF cavity), the wake field excited by the beam will affect the other beam, i.e., the two beams will cross talk to each other.
- Some new phenomena: beam tilt effect

Injection time structure

~10s.

Injection Options

Booster & linac

- Preliminary design for booster and transport lines
- Maybe a smaller booster with lower beam energy is necessary

Lattice functions: booster vs. collider

Totally 10GeV Linac

Totally 6GeV Linac

Polarized linac

• Polarized Electron Source (R&D)

10GeV Linac

Polarized electron gun for e-

Polarized electron beam collide with unpolarized positron

中國科學院為能物理研究所 Institute of High Energy Physics

4. Technical Systems

- All technical systems have been looked at
 - SRF, Cryo., power, magnet, vacuum, mechanics, instrumentation,...
- Conceptual designs of all systems have been done
- Each system has a request of R&D items

Magnets

Dipole magnet	type A	type B	
	108/	дре в	
Beam energy (CeV)	120		
Bending angle (rad)	2 17E _02		
Bending radius (m)	5683 74		
Magnetic gan (mm)	100 (as LEP)		
Magnetic Length (m)	18		
Maximum field strength (T)	0.07		
Good field region, GER (mm)			
Field uniformity across GFR			
Integral field deviation (magnet to magnet)			
Quadrupole magnet	type A	type B	
Quantity	2304		
Beam energy (GeV)	120		
Aperture diameter(mm)	125		
Magnetic Length (m)	2		
Maximum field gradient (T/m)	10		
Good field region, GFR radius (mm)			
Harmonic field errors across GFR			
Integral field deviation (magnet to magnet)			
Saytupala magnat			
	992	992	
Beam energy (GeV)	120	120	ł
Aperture diameter(mm)	<u>150 (as LEP)</u>	150	
Magnetic Length (m)	0.4	0./	bill zais
Strength of sextupole field (1 /m/2)	180	180	THE PARTY DE
Good field region, GFR radius (mm)			ergy Physic
Harmonic field errors across GFR			r
		•	

Superconducting RF System

- One of the world largest SRF installations
 - 12 GeV RF voltage, 640 cavities, total cryomodule length 1.4 km
 - 104.5 MW beam power, 2 MW HOM power, 124 MW installed RF power
 - 126 kW (4.2 K equiv.) installed cryogenic power (similar to LHC)
- Three main design and technical challenges
 - Cavity with very high Q_0 at 15-20 MV/m (use state-of-the-art technology)
 - Huge HOM power extraction and low heat load (key issue)
 - Very high power CW coupler (robust, clean assembly and low heat load)
- SRF R&D and pre-production planned for extensive development of key technology, personnel, infrastructure and industrialization

More details, ref. to Jiyuan Zhai, WG5, Oct 11

CEPC SRF System Parameters

			and the second se
Parameters	CEPC-Collider	CEPC-Booster	LEP2
Cavity Type	650 MHz 5-cell Nitrogen-doped Nb	1.3 GHz 9-cell Nitrogen-doped Nb	352 MHz 4-cell Nb/Cu sputtered
Cavity number	384	256	288
V _{cav} / V _{RF}	18 MV / 6.87 GeV	20 MV / 5.04 GeV	12 MV / 3.46 GeV
E _{acc} (MV/m)	15.5	19	6 ~ 7.5
Q ₀	2E10 @ 2K	2E10 @ 2K	3.2E+9 @ 4.2K
Cryo AC power (MW)	25	2.5 (22% DF)	6.1
Cryomodule number	96 (4 cav. / module)	32 (8 cav. / module)	72 (4 cav)
RF input power / cav. (kW)	260	20	125
RF source number	384(300kW klystron)	256 (25 kW SSA)	36 (1.2 MW/8 cav)
RF AC power (MW)	200	2.4 (22% DF)	85
HOM damper power (W)	10k ferrite +1k hook	50 (hook+ceramic)	300 (hook)

384 cavities in 8 sections **CEPC SRF System location** IP1 e^+ e 90cavities 180m 6. 094km e e RF One Ring / Two Beam Bending radius Harmonic number: 116245 Circumference: 53.6km IP2 frf: 650MHz

file 650.MHZ f0: 5.6kHz lb:16.6mA Pb: 50MW/beam SCC: 400 HOMs: ~6.5 kW/cav Q0: 1E+10 e⁺ RF RF RF RF

IHEP SRF Key Technology Experience

1.3 GHz 9-cell cavity vertical test 20 MV/m, Q_0 =1.4E10

1.3 GHz test cryomodule horizontal test soon

12 m 1.3 GHz cryomodule for Euro-XFEL

650 MHz β=0.82 5-cell cavity vertical test soon

500 MHz coupler 420 kW CW TW

HOM absorber ferrite 6kW

P BOO MEHE DAVIN HOUSION

Civil Design

- Initial geological investigation and conceptual design of the tunnel has been started
 - Underground tunnel
 - Surface facility
 - Utilities
 - Cost estimate and optimization

5. Plan in the near future

- CPEC
 - Pre-CDR study, R&D and preparation work
 - Pre-study: 2013-15 **→** Pre-CDR by 2014
 - R&D: 2016-2020
 - Engineering Design: 2015-2020
 - Construction: 2021-2027
 - Data taking: 2030-2036
- SPPC
 - Pre-study, R&D and preparation work
 - Pre-study: 2013-2020
 - R&D: 2020-2030
 - Engineering Design: 2030-2035
 - Construction: 2036-2042
 - <u>– Data taking: 2042 -</u>

中國科學院為能物現研究所 Institute of High Energy Physics

Pre-CDR status

Table of Contents (Draft, February 10, 2014)

Executive summary

- 1. Introduction
- 2. Sciences of CEPC and SppC
- 3. Machine layout and performance
- CEPC accelerator physics
- Main parameters Lattice
- Interacton region and machine-detector interface
- 4) Beam instability

Beam-beam effects

6) Synchrotron radiation

Injection and beam dump

- Finished the draft Writing Preparing

- 8) Background
- 9) Polarization
- 5. CEPC technical systems
 - Superconducting RF system
 - Cryogenic system
 - Magnets
 - Vacuum
 - Power supplies
 - 6) Instrumentation
 - Control system 7)
 - 8) Radiation shielding
 - Survey and alignment

- 6. CEPC injectors 1) e+ and e- sources Linac Booster ring
- 7. Upgrade to SppC
 - 1) Key accelerator physics issues
 - Main parameters i.
 - Synchrotron radiation ii.
 - Beam-beam effects iii.
 - Electron cloud effect iv.
 - 2) Key technical systems
 - High field superconducting magnet i.
 - Vacuum and beam screen ii.
 - Reconfiguration of the accelerator complex
- 8. Other possible upgrades
 - ep
 - 2) yy
- 9. Civil construction
- 10. Environment, safety and health considerations
- 11. R&D programs
- Project plan and cost estimate

- the state of the state

SppC Accelerator Design (preliminary)

Proton-proton collider luminosity

$$L_{0} = \frac{N_{p}^{2} N_{b} f_{rep} \gamma}{4\pi\varepsilon_{n} \beta_{IP}} F \qquad (F = \sqrt{1 + \left(\frac{\theta_{c} \sigma_{z}}{2\sigma_{x,IP}}\right)^{2}}) \qquad \qquad \xi = \frac{N_{p} r_{p}}{4\pi\varepsilon_{n}} \le 0.004$$

SppC Collider Ring(50Km)

Main constraint: high-field superconducting dipole magnets

Institute of High Energy Physics

SppC Main Parameters (preliminary)

Parameter	Value	Unit
Circumference	52	km
Beam energy	35	TeV
Dipole field	20	Т
Injection energy	2.1	TeV
Number of IPs	2 (4)	
Peak luminosity per IP	1.2E+35	cm ⁻² s ⁻¹
Beta function at collision	0.75	m
Circulating beam current	1.0	А
Max beam-beam tune shift per IP	0.006	
Bunch separation	25	ns
Bunch population	2.0E+11	
SR heat load @arc dipole (per aperture)	56	W/m

Institute of High Energy Physics

A.

Summary

- "All" aspects of the machine design have been touched.
- Accelerator physics of CEPC ring, are being studied. But still a lot of important issues, background, MDI, error effect, etc., need further studies.
- Parameters of main ring, booster, linac, are still evolving, and major changes may still happen.
- Technical issues are also being considering, and some key technologies are proposed for R&D.
- <u>The first stable version will be ready by the end of</u> 2014. Institute of High Energy Physics

Thanks for your attention!

中國科學院為能物理研究所 Institute of High Energy Physics