

Synchrotron radiation effects in the HF (FCC-ee) injector

Yannis PAPAPHILIPPOU, CERN

Outline

- Guidelines and tentative parameters for the FCC-ee injector
- Synchrotron radiation (SR) considerations
- SR in the Booster Ring
- SR in the SPS
- SR in the pre-injector
 - □ Positron production
- Outlook

Booster ring considerations

- □ Besides the collider ring(s), a booster of the same size (same tunnel) must provide beams for **top-up injection**.
 - Same size of RF system, but low power (~ MW).
 - Top up frequency ~0.1 Hz.
 - Booster injection energy ~20 GeV
 - Injector field at 20 GeV quite low
 - Long chicanes for by-passing experiments

□ Injector complex for e+ and e- beams of ~20 GeV

J. Wenninger, FCC kick-off 2014

Target injector parameters

Parameter	Ζ	W	н	tt	LEP2
E [GeV]	45.5	80	120	175	104
I [mA]	1442	151	30	7	1
No. bunches	16700	4490	1360	98	4
Bunch population [10 ¹¹]	1.8	0.7	0.46	1.4	4.2
Lifetime [min]	298	73	29	21	434
Time between injections [sec]	361	88	35	25	263
Injected top-up bunch population [10 ¹¹]	601.2	62.9	12.5	2.7	0.34
Required particle flux for top-up [10 ¹¹ p/sec]	2.10	0.89	0.44	0.13	0.001
Required particle flux for full filling [10 ¹¹ p/sec]	31.3	3.3	0.7	0.1	0.02
Booster injector ramp rate [GeV/sec]	5.2	12.2	20.4	31.6	17.1

For defining injector cycle and flux, assumed **2%** of current decay between top-ups

The top energy Fcc-ee defines the maximum time between injections/species (25sec)

□ Considering 50% duty factor (Interleaved e⁺/e⁻injection), injections should be made at a minimum rate of ~0.1Hz

For full collider filling (0.25mA/min for LEP), assumed 20min of filling time and 80% transfer efficiency along the injector chain

Ramp rate for 0.1Hz injection considering linear ramp and short flat bottom and flat top (~100ms)

• Note that LEP2 injector parameters are obtained with the same assumptions

Possible FCC-ee injector scheme

- LINACS and positron production a downgraded version of the one for CLIC (or upgraded LIL/CTF3)
 - □ 2GHz, 50Hz repetition rate, less than 10⁹ p/b
- Trains with 3200 bunches (320 for the Higgs and 98 for top production) injected 8 times (7 for the top) in the SPS @ 10GeV in the required 50MHz bunch structure and accelerated to 20GeV
 Need new RF system in the SPS (50MHz?)
- SPS duty factor of 0.5 (apart for top) leaving time for fixed target proton physics
 - \Box 5 cycles of 1.2s in a supercycle of 12s
- Injected into the booster ring (flat bottom of 6s or 2.4s) to be accelerated in 3s to required extraction energy for FCC-ee
 - **Filling time** for full filling **20min**
 - **Top-up** compatible with lifetime (**25s** for FCC-ee top)

Tentative FCC-ee injector parameters

Accelerator	FC	Cee-Z	FCC	FCCee-W		Cee-H	FC	Cee-tt
Energy [GeV]	4	5.5		80		20	1	75
Type of filling	Full	Top-up	Full	Top-up	Full	Top-up	Full	Top-up
LINAC # bunches	3200 320 28						280	
LINAC repetition rate [Hz]				Ę	50			
LINAC RF freq [MHz]				20	000			
LINAC bunch population [10 ⁸]	5.9	0.4	0.6	0.2	1.2	1.2	0.02	0.04
# of LINAC injections				8				7
SPS/BR bunch spacing [MHz]	50							
SPS bunches/injection	80 8				8		7	
SPS bunch population [10 ¹⁰]	2.35	0.16	0.25	0.08	0.49	0.49	0.10	0.14
SPS duty factor	0.5 0.29					.29		
SPS / BR # of bunches	640/3200 64/320 49				0/98			
SPS / BR cycle time [s]	1.2 / 12 1.2					/ 8.4		
Number of BR cycles	50	15	50	3	50	1	71	1
Transfer efficiency	0.8							
Total number of bunches	16700 4490 1360				98			
Filling time (both species) [sec]	1200	360	1200	72	1200	24	1193	16.8
Injected bunch population [10 ¹⁰]	18	0.36	7	0.14	0.46	0.092	14	0.28

Top Energy [GeV]	45.5	80	120	175
Cycle time [s]		1	12	
Circumference [m]		100	0000	
Bending radius [m]		11	000	
njection energy [GeV]		2	20	
Dipole length		1	0.5	
Emittance @ injection [nm]	2.81	0.10	0.01	0.01
Emittance @ extraction [nm]	14.5	1.65	1.0	1.0
Bending field @ injection [G]		6	51	
Bending field @ extraction [G]	138	243	361	531
Energy Loss / turn @ injection [MeV]	1.287			
Energy Loss / turn @ extraction [MeV]	34.5 329.4 1667.67542			7542.6
ong. Damping time @ injection [turns]	15543			
ong. Damping time @ extraction [turns]	1320	243	72	23
Average current [mA]	36.1	3.8	0.8	0.1
Average power @ injection [kW]	46.4	4.9	1.0	0.2
Average power @ extraction [MW]	1.24	1.26	1.26	0.88
Average power over 1 cycle [kW]	100	105	105	104
Power from dipoles @ extraction [W]	189	192	191	189
Power density on bends @ extraction [W/m]	18	18	18	13
Critical energy [MeV]	0.02	0.10	0.35	1.08
Radiation angle [urad]	11 2	64	43	29

- "Similar" geometry as main ring to fit in the same tunnel
 - Need to by-pass experiments
 - Low emittance @ extraction obtained quite naturally due to the small bending angle
 - Good for injection efficiency and top-up
- Ultra-low emittances @ injection if keeping the same optics as for collider
 - □ 10pm for higgs and top
 - Need detuned optics or working @ full coupling to avoid collective effects

Top Energy [GeV]	45.5	80	120	175
Cycle time [s]		-	12	
Circumference [m]		100	0000	
Bending radius [m]		11	000	
Injection energy [GeV]		-	20	
Dipole length		1	0.5	
Emittance @ injection [nm]	2.81	0.10	0.01	0.01
Emittance @ extraction [nm]	14.5	1.65	1.0	1.0
Bending field @ injection [G]		ť	51	-
Bending field @ extraction [G]	138	243	361	531
Energy Loss / turn @ injection [MeV]	1.287			
Energy Loss / turn @ extraction [MeV]	34.5	329.4	1667.6	7542.6
Long. Damping time @ injection [turns]	15543			
Long. Damping time @ extraction [turns]	1320	243	72	23
Average current [mA]	36.1	3.8	0.8	0.1
Average power @ injection [kW]	46.4	4.9	1.0	0.2
Average power @ extraction [MW]	1.24	1.26	1.26	0.88
Average power over 1 cycle [kW]	100	105	105	104
Power from dipoles @ extraction [W]	189	192	191	189
Power density on bends @ extraction [W/m]	18	18	18	13
Critical energy [MeV]	0.02	0.10	0.35	1.08
Radiation angle [urad]	11.2	6.4	4.3	2.9

Energy loss/turn determined by energy and ring geometry

- Same as for the collider at extraction (~1MeV at injection)
- Bending field at injection of **61Gauss**
 - Has to remain low as energy loss/turn at flat top is already quite high
 - Compensation of eddy currents, hysteresis
 effects and appropriate shielding from FCC-ee
 main magnets is needed

Top Energy [GeV]	45.5	80	120	175
Cycle time [s]		-	12	
Circumference [m]		100	0000	
Bending radius [m]		11	000	
Injection energy [GeV]		-	20	
Dipole length		1	0.5	
Emittance @ injection [nm]	2.81	0.10	0.01	0.01
Emittance @ extraction [nm]	14.5	1.65	1.0	1.0
Bending field @ injection [G]	61			
Bending field @ extraction [G]	138	243	361	531
Energy Loss / turn @ injection [MeV]	1.287			
Energy Loss / turn @ extraction [MeV]	34.5 329.4 1667.67542.			7542.6
Long. Damping time @ injection [turns]	15543			
Long. Damping time @ extraction [turns]	1320 243 72 23			23
Average current [mA]	36.1	3.8	0.8	0.1
Average power @ injection [kW]	46.4	4.9	1.0	0.2
Average power @ extraction [MW]	1.24	1.26	1.26	0.88
Average power over 1 cycle [kW]		105	105	104
Power from dipoles @ extraction [W]	189	192	191	189
Power density on bends @ extraction [W/m]	18	18	18	13
Critical energy [MeV]	0.02	0.10	0.35	1.08
Radiation angle [µrad]	11.2	6.4	4.3	2.9

 Average current considered for full filling, from a fraction to ~36mA

Average power at injection up to 46kW

- Up to ~1.3MW at extraction
- Power density up to ~18W/m

Top Energy [GeV]	45.5	80	120	175
Cycle time [s]			12	
Circumference [m]		100	0000	
Bending radius [m]		11	000	
Injection energy [GeV]			20	
Dipole length		1	0.5	
Emittance @ injection [nm]	2.81	0.10	0.01	0.01
Emittance @ extraction [nm]	14.5	1.65	1.0	1.0
Bending field @ injection [G]	61			
Bending field @ extraction [G]	138	243	361	531
Energy Loss / turn @ injection [MeV]	1.287			
Energy Loss / turn @ extraction [MeV]	34.5 329.4 1667.67542			7542.6
Long. Damping time @ injection [turns]	15543			
Long. Damping time @ extraction [turns]	1320	243	72	23
Average current [mA]	36.1	3.8	0.8	0.1
Average power @ injection [kW]	46.4	4.9	1.0	0.2
Average power @ extraction [MW]	1.24	1.26	1.26	0.88
Average power over 1 cycle [kW]		105	105	104
Power from dipoles @ extraction [W]	189	192	191	189
Power density on bends @ extraction [W/m]	18	18	18	13
Critical energy [MeV]	0.02	0.10	0.35	1.08
Radiation angle [µrad]	11.2	6.4	4.3	2.9

Critical energies @ extraction as for the collider (up to **1.1MeV** for highest energy)

- Vertical radiation angle of a few µrads
- Needs demanding shielding, absorption scheme and vacuum chamber design

Synchrotron Radiation

F. Cerruti, FCC Kick-off, 2014

 Critical energy ranging from a few keV at injection (20GeV) to around ~1MeV at flat top (as for collider)

Photon Cross Section

 $\sigma_{p.e.}$ =photoelectric σ_{incoh} =Compton $\sigma_{coherent}$ =Rayleigh σ_{nuc} =photonuclear κ_{N} =pair production, nuclear field κ_{e} =pair production, electron field In the photons energy of interest, cross section is Compton dominated, but tails extend to photo-nuclear reactions

Shielded beam chamber

Chamber shielding for collider

Beam chamber: round IR = 4.5 cm
 Aluminum pipe: thickness = 0.5 cm
 Lead shielding: thickness = 5.0 cm

10

5

y [cn]

-5

-10

-10

F. Cerruti, FCC Kick-off, 2014

- Booster ring will need absorbers in front of dipoles but also beam pipe shielding
- Thickness to be defined according to radiation power needs (18W/m @ top energy, for each dipole) but still in the MW range for the whole ring at extraction
- Escaping power should be evaluated and included in tunnel activation estimations (production of ozon, neutron dose,...)

SPS as LEP injector

- Energy loss/turn up to **20MeV** at 20 GeV
- Critical energy in the range of a few to 25 keV
- Power density of around 2W/m at maximum energy (0.45mA of average current)
- Most of it absorbed by SS vacuum chamber
 - Radiation dose in the shadow of proton operation
- Shielding (lead collar of 10mm) placed in MBB magnets for protecting vacuum flanges and magnet coil insulation

Maximum energy	20
Number of electrons or positrons per SPS pulse	6.4×10^{10}
Mean radius of SPS	1100
Current of circulating e [±] (each beam)	0.445
Bending radius of main ring magnets	741.3
Energy loss for one e^{\pm} per turn	19.1
Energy loss per path length in dipole	4.1
Power loss per path length in dipole	1.82
Critical energy of synchrotron radiation	23.9
Superperiod of SPS magnet cycle	15
Number of e^{\pm} cycles per superperiod (2 e^{+} , 2 e^{-})	4

ELECTRON ENERGY IN GeV

LOSS IN kev/m

ENERGY

GeV

m mA m MeV keV/m W/m

keV

Radiation in the SPS

- Energy loss/turn up to 20MeV at 20 GeV
- Critical energy in the range of a few to 25 keV
- Average power from 124kW (injection) to ~2MW (extraction) for Z production (highest average current, of around 104mA)
- This corresponds to ~3kW for each dipole or ~430W/m
 - Need absorption scheme, and maybe shielding, i.e new vacuum pipe,..
- Electron cloud and ions!!!

CLIC Main Beam Injector LINACS

S. Doebert, POSIPOL 2013

Distance (crystal-amorphous) d = 2 m

Amorphous thickness e =10 mm

Target Parameters Crystal		
Material	Tungsten	W
Thickness (radiation length)	0.4	Xo
Thickness (length)	1.40	mm
Energy deposited	~1	kW

Needs **shielding** around the target area

Target Parameters Amorphous		
Material	Tungsten	W
Thickness (Radiation length)	3	Xo
Thickness (length)	10	mm
PEDD	30	J/g
Distance to the crystal	2	m

Positron production for CLIC - Crystal

O. Dadoun,

CLIC note 808, 2009

10

ω(GeV)

10⁵

10

10³

10²

10

3 GeV

- tungsten crystal, peaked at lower energies (majority of the photons below 100MeV)
- No issue with power deposited on crystal (below 1% of incident electron beam power

$E_{e^-}(GeV)$	$P_{e^-}(kW)$	t(cm)	N_{γ}/e^{-}	$\overline{\mathrm{E}}_{\gamma}(\mathrm{MeV})$	$P_{\gamma}(kW)$
10	190	0.10	22.5	304	130
5	90	0.14	20.0	160	58
4	72	0.15	18.5	136	45
3	54	0.16	15.5	115	32

10 GeV

Positron production for CLIC - target

O. Dadoun, CLIC note 808, 2009

$E_{e^-}(GeV)$	Yield	P(kW)	Pedd(J/g)
3	1.04	7.9	10.30
4	1.50	10.8	16.90
5	1.95	13.4	24.27
10	4.14	22.4	59.81

- For amorphous tungsten target Peak Energy deposition density limited below 35J/g
- Compromise should be found between incident electron parameters (energy, charge), required positron yield, distance between crystal and converter, target thickness and adiabatic matching device (AMD) parameters

- Synchrotron radiation power in Booster ring is much lower than in collider but with similar critical energy
 Absorbers and shielding are necessary
- Synchrotron radiation power in the SPS is much higher and necessitates absorbers and shielding
- Vacuum chamber design for both rings may become complex (anti-chambers, coatings for SEY reduction and pumping, eddy current considerations,...)
- Pre-injector has requirements typical to electron linacs
- Positron production system necessitates careful design for required yield but also associated power deposition (damage) and shielding (radiation)

感谢您的关注 Thank you for your attention