Geant4 Geometry

Outline

- Material
- Define detector geometry
- Debugging geometries
- Magnetic field
- Sensitive Detector

System of Units

- System of units are defined in CLHEP, based on:
 - millimetre (mm), nanosecond (ns), Mega eV (MeV), positron charge (eplus) degree Kelvin (kelvin), the amount of substance (mole), radian (radian)...
- All other units are computed from the basic ones.
- Divide a variable by a unit you want to get.
 - G4cout << dE / MeV << " (MeV)" << G4endl;</p>
- If no unit is specified, the *internal* G4 unit will be used
- To give a number, unit **must** be "multiplied" to the number.
 - for example :

G4double width = 12.5*m;

G4double density = 2.7*g/cm3;

Definition of Materials

- Different kinds of materials can be described:
 - isotopes <-> G4Isotope
 - elements <-> G4Element
 - molecules, compounds and mixtures <-> G4Material
- **G4Isotope** and **G4Element** describe the properties of the *atoms*:
 - Atomic number, number of nucleons, mass of a mole, shell energies
 - Cross-sections per atoms, etc...
- **G4Material** describes the *macroscopic* properties of the matter:
 - temperature, pressure, state, density
 - Radiation length, absorption length, etc...

Material: molecule

```
a = 1.01*g/mole;
G4Element* elH =
new G4Element("Hydrogen",symbol="H",z=1.,a);
a = 16.00*g/mole;
G4Element* elO =
new G4Element("Oxygen",symbol="O",z=8.,a);
```


Material: mixture

G4Element* elC = ...; G4Material* SiO2 = ...; G4Material* H2O = ...;

Material: Isotope

An element can be created according to user defined abundances

```
G4Isotope* isoU235 =

new G4Isotope("U235", iz=92, ia=235, a=235.0439242*g/mole);

G4Isotope* isoU238 =

new G4Isotope("U238", iz=92, ia=238, a=238.0507847 *g/mole);
```

G4Element* elenrichedU = new G4Element("enriched U", symbol="U", ncomponents=2); elenrichedU->AddIsotope(isoU235, abundance=80.*perCent); elenrichedU->AddIsotope(isoU235, abundance=20.*perCent);

G4Material* matenrichedU= new G4Material("Ufornuclear powergeneration",density= 19.050*g/cm3, ncomponents = 1, kStateSolid); matenrichedU>AddElement(elenrichedU, fractionmass = 1);

Material from NIST

NIST database: http://physics.nist.gov/ PhysRefData

N Name ChFormula density(g/cm^3) I(eV) I G4_H H_2 8.3748e-05 19.2 I G4_He 0.000166322 41.8 I 0.534 40 I G4_Be 1.848 G4_B 2.37 76 G4_N N_2 0.0011652 R 0.00012 I 0.00032 I 0.00032 I 0.92 I 0.92 I G4_N N Name ChFormula density(g/cm^3) I(eV) I 0.119477 6 0.63724 7 0.000166322 10 0.10005 11 0.0005 12 2e-05 16 0.00073 I 0.00016 I 19 0.00032 20 20 2e-05 26 2e-05
Image: Selementary Materials from the NIST Data Base 13 G4_Adipose_Tissue 0.92 63.2 Image: Selementary Materials from the NIST Data Base 1 0.119477 6 0.63724 Image: Selementary Materials from the NIST Data Base 1 0.119477 6 0.63724 Image: Selementary Materials from the NIST Data Base 1 0.119477 6 0.63724 Image: Selementary Materials from the NIST Data Base 1 0.119477 6 0.63724 Image: Selementary Materials from the NIST Data Base 1 0.119477 6 0.63724 Image: Selementary Materials from the NIST Data Base 1 0.119477 6 0.63724 Image: Selementary Materials from the NIST Data Base 1 0.119477 6 0.63724 Image: Selementary Materials from the NIST Data Base 1 0.000797 8 0.232333 Image: Selementary Materials from the NIST Data Base 1 0.00071 1 0.0005 Image: Selementary Materials from the NIST Data Base 1 0.00016 1 0.00005 Image: Selementary Materials from the NIST Data Base 1 0.00016 1 0.0005 Image: Selementary Materials from the NIST Data Base 1 0.0005 1 0.00016 Image: Selementary Materials from the NIST Data Base 1 0.0005 1 0.00016 Image: Selementary Materials from the NIST Data Base <t< th=""></t<>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 0.42_H 0.101400.00 1012 11 0.0005 2 G4_He 0.000166322 41.8 12 2e-05 3 G4_Li 0.534 40 15 0.00016 4 G4_Be 1.848 63.7 16 0.00073 5 G4_B 2.37 76 17 0.00119 6 G4_C 2 81 20 2e-05 7 G4_N N_22 0.0011652 82 26 2e-05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5 G4_B 2.37 76 17 0.00119 6 G4_C 2 81 19 0.00032 7 G4_N N_2 0.0011652 82 26 2e-05
6 G4_C 2 81 19 0.00032 7 G4_N N_2 0.0011652 82 26 2e-05
7 G4_N N_2 0.0011652 82 20 2e-05 26 2e-05 26
26 2e-06
8 G4_0 0_2 0.00133151 95 30 2e-05
8 G4_U U_2 0.00133151 95 30 2e-05 9 G4_F 0.00158029 115 4 G4_Air 0.00120479 85.7
6 0.000124
10 G4_Ne 0.000838505 137 7 0.755268
11 G4_Na 0.971 149 8 0.231781
12 G4_Mg 1.74 156 18 0.012827
13 G4_A1 2.6989 166 2 G4_CsI 4.51 553.1
14 G4_Si 2.33 173 53 0.47692 55 0.52308

Element/Material is retrieved from Geant4 material database by its name:

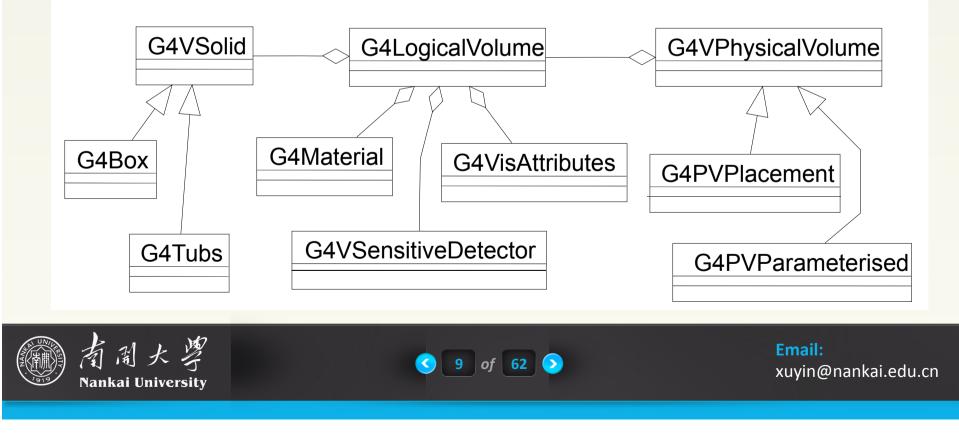
G4NistManager* manager = G4NistManager::Instance();

G4Element* elC

= mananger->FindOrBuildElement("G4_C");

G4Material* matWater

= mananager->FindOrBuildMaterial("G4_WATER");


有周大学 Nankai University

Detector geometry

Three conceptual layers

- G4VSolid -- shape, size
- G4LogicalVolume -- material, sensitivity, user limits, etc.
- **G4VPhysicalVolume** -- position, rotation

Describe your detector

- Derive your own concrete class from G4VUserDetectorConstruction abstract base class.
- Implement the method Construct()
 - 1) Construct all necessary materials
 - 2) Define shapes/solids
 - 3) Define logical volumes
 - 4) Place volumes of your detector geometry
 - 5) Associate (magnetic) field to geometry (optional)
 - 6) Instantiate sensitive detectors / scorers and set them to corresponding volumes (optional)
 - 7) Define visualization attributes for the detector elements (optional)
 - 8) Define regions (optional)
- Set your construction class to G4RunManager

main()


// Construct the default run manager G4RunManager* runManager = new G4RunManager;

// Set mandatory user initialization classes
MyDetectorConstruction* detector = new MyDetectorConstruction;
runManager->SetUserInitialization(detector);
runManager->SetUserInitialization(new MyPhysicsList);

// Set mandatory user action classes
runManager->SetUserAction(new MyPrimaryGeneratorAction);

// Set optional user action classes MyEventAction* eventAction = new MyEventAction(); runManager->SetUserAction(eventAction); MyRunAction* runAction = new MyRunAction(); runManager->SetUserAction(runAction);

Your detector construction

```
#ifndef MyDetctorConstruction_h
#define MyDetctorConstruction_h 1
#include "G4VUserDetectorConstruction.hh"
class MyDetctorConstruction
```

```
: public G4VUserDetectorConstruction
```

```
{
nub
```

public:

G4VUserDetectorConstruction();

```
virtual ~G4VUserDetectorConstruction();
```

```
virtual G4VPhysicalVolume* Construct();
```

//Construct() should return the pointer of the world physical volume. //The world physical volume represents all of your geometry setup.

public:

// set/get methods if needed

private:

// granular private methods if needed // data members if needed
};

#endif

Describe your detector

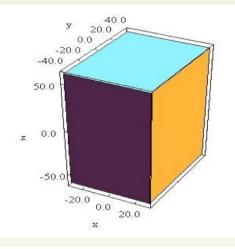
 Basic strategy G4VSolid* pBoxSolid = new G4Box("aBoxSolid", 1.*m, 2.*m, 3.*m); G4LogicalVolume* pBoxLog = new G4LogicalVolume(pBoxSolid, pBoxMaterial, "aBoxLog"); G4VPhysicalVolume* aBoxPhys = new G4PVPlacement(pRotation, G4ThreeVector(posX, posY, posZ), pBoxLog, "aBoxPhys", pMotherLog, 0, copyNo);

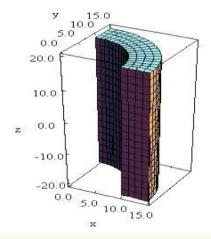
- A unique physical volume which represents the experimental area must exist and fully contains all other components
 - The world volume

Solids

Solids defined in Geant4:

- CSG (Constructive Solid Geometry) solids
 G4Box, G4Tubs, G4Cons, G4Trd, …
- Specific solids (CSG like)
 - G4Polycone, G4Polyhedra, G4Hype, ...
- BREP (Boundary Represented) solids
 - G4BREPSolidPolycone, G4BSplineSurface, ...
 - Any order surface
- Boolean solids
 - G4UnionSolid, G4SubtractionSolid, ...

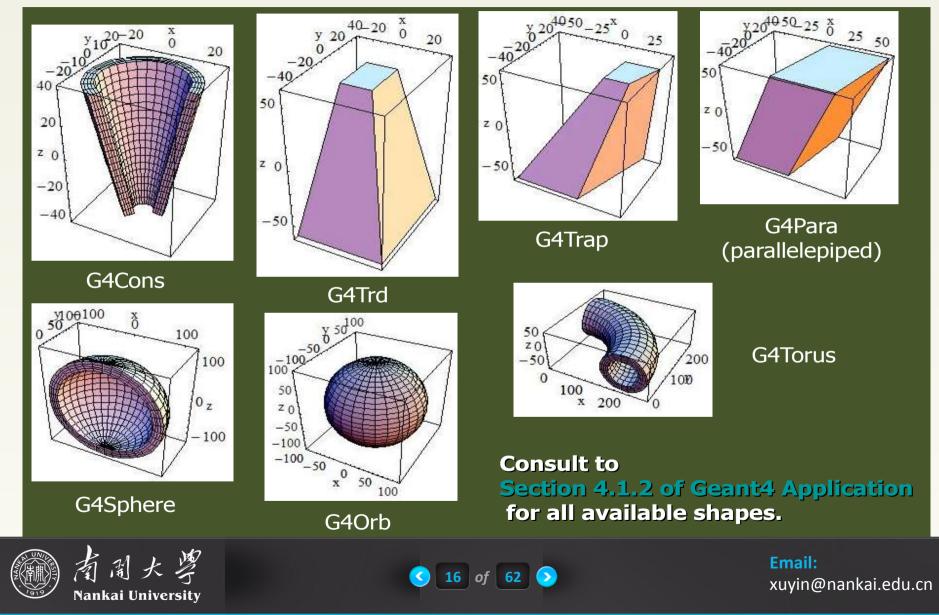


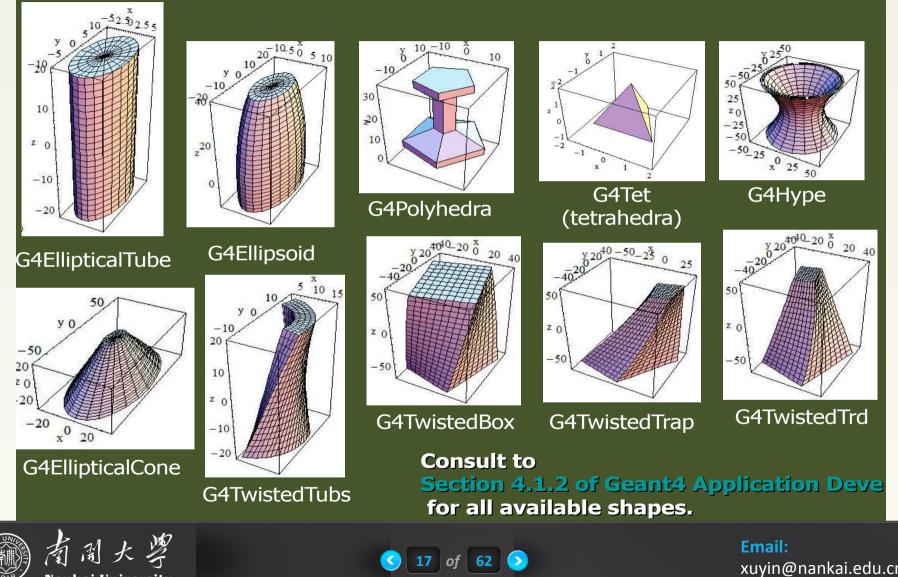


CSG: G4Box, G4Tubs

G4Box(const G4String &pname, G4double half_x, G4double half_y, G4double half_z);

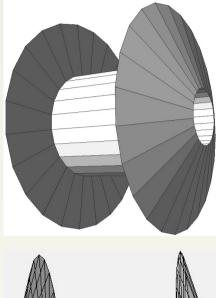
G4Tubs(const G4String &pname, G4double pRmin, G4double pRmax, G4double pDz, G4double pSphi, G4double pDphi);

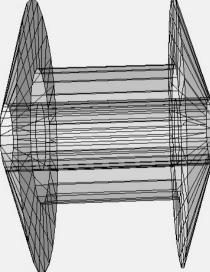




Other CSG solids

Specific CSG solids

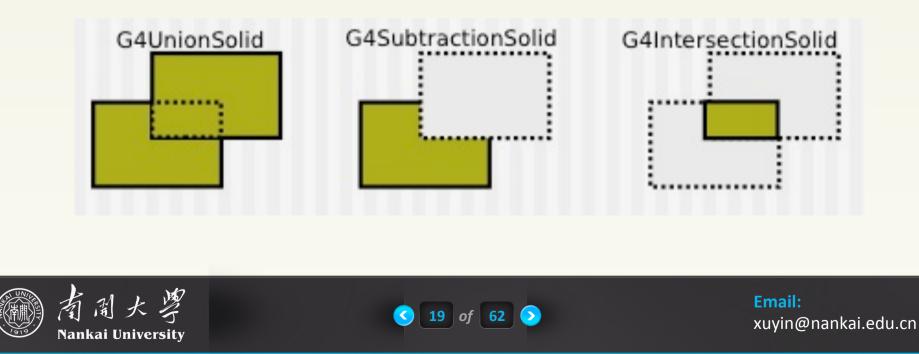

Nankai University

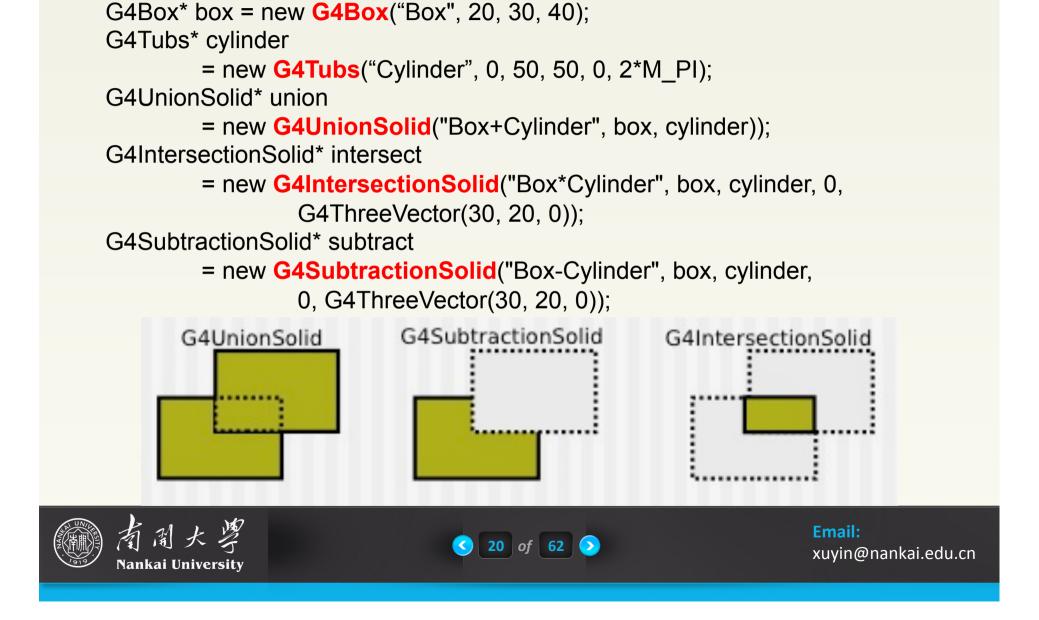

xuyin@nankai.edu.cn

BREP Solids

BREP = Boundary REPresented Solid


- Listing all its surfaces specifies a solid
 - e.g. 6 planes for a cube
- Surfaces can be
 - planar, 2nd or higher order
 - Splines, B-Splines
- Advanced BREPS built through CAD systems





Boolean Solids

- Solids can be combined using boolean operations:
 - G4UnionSolid, G4SubtractionSolid, G4IntersectionSolid
- Solids can be either CSG or other Boolean solids
- Note: tracking cost for the navigation in a complex Boolean solid is proportional to the number of constituent solids

Boolean Solids - Example

Computing volumes and masses

• Geometrical volume of a generic solid or boolean composition can be computed from the **solid**:

G4double GetCubicVolume();

Exact volume is exactly calculated for most of CSG solids, while estimation based on Monte Carlo integration is given for other solids

 Overall mass of a geometry setup (subdetector) can be computed from the logical volume:

G4double GetMass(G4Bool forced=false,

G4bool propagate=true, G4Material* pMaterial=0);

- The computation may require a considerable amount of time, depending on the complexity of the geometry.
- The return value is cached and reused until *forced*=true.
- Daughter volumes will be neglected if *propagate*=false.

G4LogicalVolume

• Contains all information of volume except position:

- Shape and dimension (G4VSolid)
- Material, sensitivity, visualization attributes
- Position of daughter volumes
- Magnetic field, User limits
- Shower parameterization
- Region
- Physical volumes of same type can share a logical volume

G4LogicalVolume

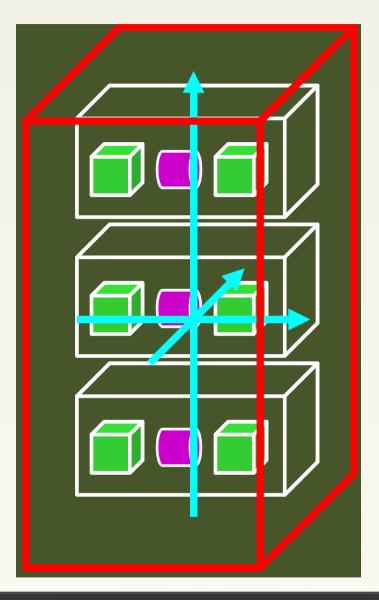
To create a logical volume for a given material and solid, the user must instantiate G4LogicalVolume:

G4LogicalVolume(G4VSolid* pSolid, G4Material* pMaterial, const G4String& name, G4FieldManager* pFieldMgr=0, G4VSensitiveDetector* pSDetector=0, G4UserLimits* pULimits=0, G4bool optimise=true);

Geometrical hierarchy

Mother and daughter volumes

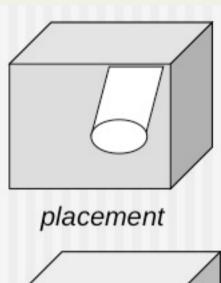
- A volume is placed in its mother volume
 - Position and rotation of the daughter volume is described with respect to the local coordinate system of the mother volume
 - The origin of the mother's local coordinate system is at the center of the mother volume
 - Daughter volumes cannot protrude from the mother volume
 - Daughter volumes cannot overlap
- One or more volumes can be placed to mother volume
- If the logical volume of the mother is placed more than once, all daughters appear by definition in all these physical instances of the mother

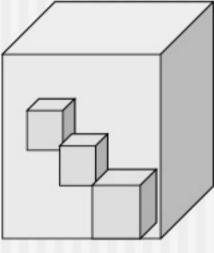

商阁大学 Nankai University

Geometrical hierarchy

World volume = root volume of the hierarchy

- The world volume must be a unique physical volume which fully contains all other volumes
 - The world defines the global coordinate system
 - The origin of the global coordinate system is at the center of the world volume
 - Should not share any surface with contained geometry

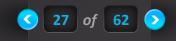



南間大學 Nankai University

Physical Volumes

- Placement: it is one positioned volume
 - Represents one "real" volume
- Repeated: a volume placed many times
 - can represent any number of volumes
 - Replica and Division
 - simple repetition along one axis
 - Parameterized
 - Repetition with respect to copy
 number
- A mother volume can contain either
 - many placement volumes OR
 - one repeated volume

repeated


 Nankai University

G4VPhysicalVolume

- G4VPhysicalVolume is the base class of physical volumes
 - Like G4VSolid, it as an abstract class
 - Use the inherited classes to place your logical volumes
- G4VPhysicalVolume implementations:
 - G4PVPlacement
 - G4PVParameterised
 - G4PVReplica
 - G4PVDivision

G4VPhysicalVolume

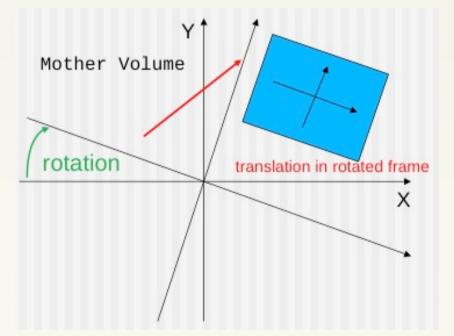
- G4PVPlacement 1 Placement = One Volume
 - A volume instance positioned once in a mother volume
- G4PVParameterised 1 Parameterized = Many Volumes
 - Parameterized by the copy number
 - Shape, size, material, position and rotation can be parameterized, by implementing a concrete class of G4VPVParameterisation.
 - Reduction of memory consumption
 - Currently: parameterization can be used only for volumes that either
 - a) have no further daughters or b) are identical in size & shape.
- G4PVReplica, G4PVDivision 1 Replica = Many Volumes
 - Slicing a volume into smaller pieces (if it has a symmetry)

G4PVPlacement

G4PVPlacement(G4RotationMatrix* pRot, G4ThreeVector& tlate, G4LogicalVolume* pCurrentLogical, // volume being placed const G4String& pName, G4LogicalVolume* pMotherLogical, // mother logical volume G4bool pMany, G4bool pMany, G4int pCopyNo, G4bool pSurfChk=false); // activate overlap checking

• Single volume positioned relatively to the mother volume

In a frame rotated and translated relative to the coordinate system of the mother volume



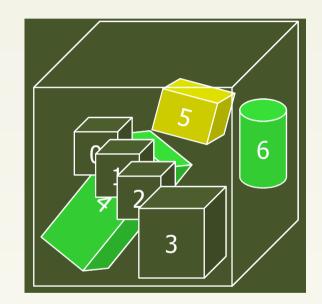
G4PVPlacement Example

G4ThreeVector boxPosition(100.*cm, 80.*cm, 0.*cm); G4RotationMatrix* boxRotation = new **G4RotationMatrix**; boxRotation->**rotateZ**(30.*deg); //Rotate around Z-axis //Other Rotations : rotateX(angle), rotateY(angle)

G4VPhysicalVolume* boxPhys = new G4PVPlacement(boxRotation, boxPosition, boxLog, "myBoxPhys", motherLogical, false, 1);

G4PVParameterised

G4PVParameterised(const G4String& pName, G4LogicalVolume* pLogical, G4LogicalVolume* pMother, const EAxis pAxis, const G4int nReplicas, G4VPVParameterisation *pParam G4bool pSurfChk=false);


 Replicates the volume nReplicas times using the parameterization pParam, within the mother volume pMother

Parameterized Physical Volumes

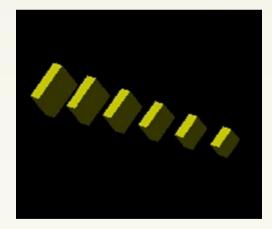
- User should implement a class derived from G4VPVParameterisation abstract base class and define following as a function of copy number
 - where it is positioned (transformation, rotation)
- Optional:
 - the size of the solid (dimensions)
 - the type of the solid, material, sensitivity, vis attributes
- All daughters must be fully contained in the mother.
- Daughters should not overlap to each other.

Parameterisation Example

G4VSolid* solidChamber = new **G4Box**("chamber", 100*cm, 100*cm, 10*cm); G4LogicalVolume* logicChamber =

new **G4LogicalVolume**(solidChamber, chamberMater, "Chamber", 0, 0, 0); ...

G4VPVParameterisation* chamberParam =

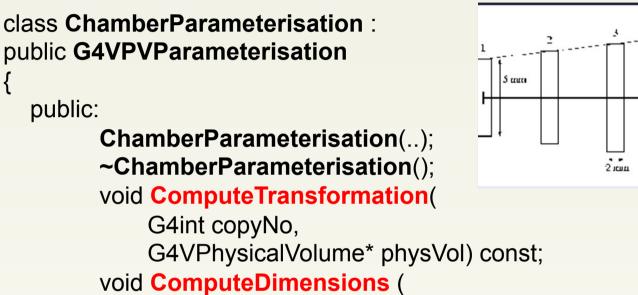

new ChamberParameterisation(

nofChambers, firstPositionZ, spacingZ, chamberWidth, firstLength, lastLength);

G4VPhysicalVolume* physChamber

= new G4PVParameterised(

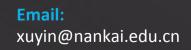
"Chamber", logicChamber, logicTracker, kZAxis, NbOfChambers, chamberParam);



门间大号 Nankai University

Parameterisation Example

G4Box& trackerLayer, G4int copyNo, Const G4VPhysicalVolume* physVol) const;


private:

G4int fNoChambers; G4double fStartZ; G4double fSpacingZ; G4double fHalfWidth; G4double fHalfLengthFirst; G4double fHalfLengthIncr;

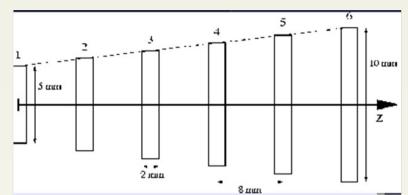
有阁大学 Nankai University

6

10 mun

Z

5


nm 8

Parameterisation Example

void ChamberParameterisation

::ComputeTransformation (

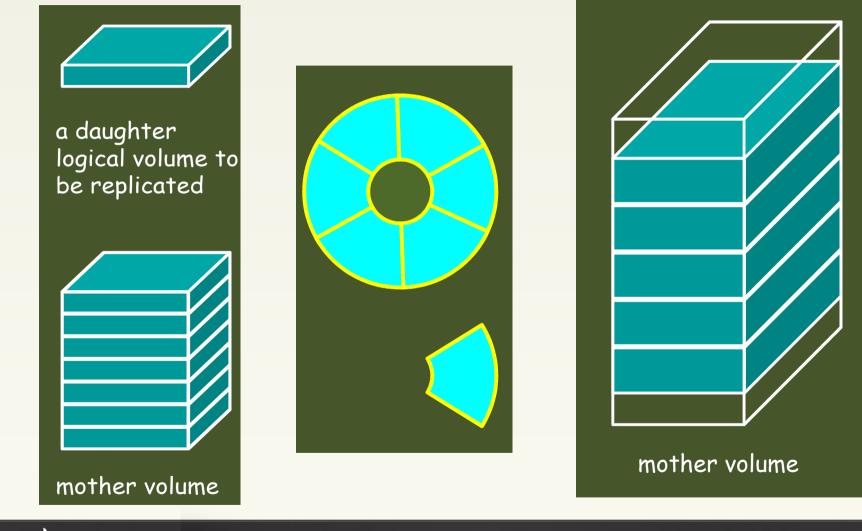
G4int copyNo, G4VPhysicalVolume* physVol) const


```
G4double zPosition= fStartZ + (copyNo+1) * fSpacingZ;
physVol->SetTranslation(G4ThreeVector(0, 0, zPosition));
physVol->SetRotation(0);
```

```
void ChamberParameterisation::ComputeDimensions (
```

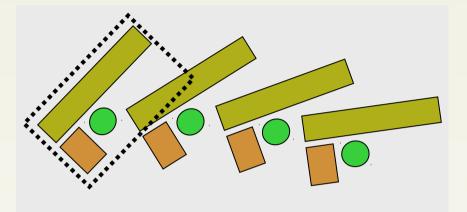
G4Box& trackerChamber, G4int copyNo, const G4VPhysicalVolume* physVol) const

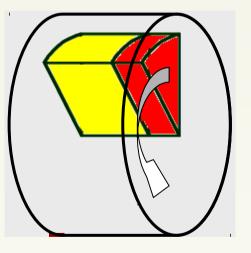
G4double halfLength = fHalfLengthFirst + copyNo * fHalfLengthIncr; trackerChamber.SetXHalfLength(halfLength); trackerChamber.SetYHalfLength(halfLength); trackerChamber.SetZHalfLength(fHalfWidth);

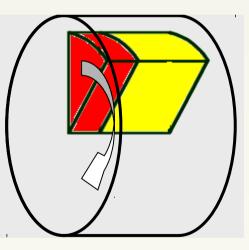


}

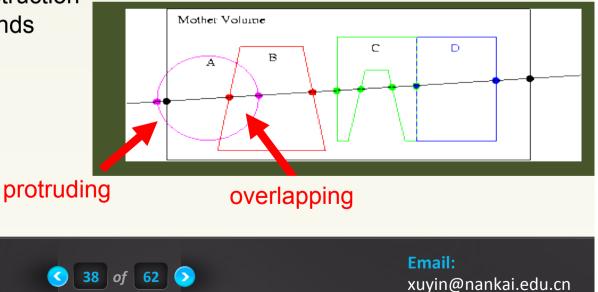
Replica and Division







Grouping(Assembly) and Reflecting



Debugging geometries

- An protruding volume is a contained daughter volume which actually protrudes from its mother volume.
- Volumes are also often positioned in a same volume with the intent of not provoking intersections between themselves. When volumes in a common mother actually intersect themselves are defined as overlapping.
- The problem of detecting overlaps between volumes is bounded by the complexity of the solid models description.
- Utilities are provided for detecting wrong positioning
 - Optional checks at construction
 - Kernel run-time commands
 - Graphical tools

(利利)ン子 Nankai University

Optional checks at construction

• Constructors of G4PVPlacement and G4PVParameterised have an optional argument "pSurfChk".

G4PVPlacement(G4RotationMatrix* pRot, const G4ThreeVector &tlate, G4LogicalVolume *pDaughterLogical, const G4String &pName, G4LogicalVolume *pMotherLogical, G4bool pMany, G4int pCopyNo, G4bool pSurfChk=false);

- If this flag is true, overlap check is done at the construction.
 - Some number of points are randomly sampled on the surface of creating volume.
 - Each of these points are examined
 - If it is outside of the mother volume, or
 - If it is inside of already existing other volumes in the same mother volume.
- This check requires lots of CPU time, but it is worth to try at least once when you implement your geometry of some complexity.

有阁大学 Nankai University

Debugging run-time commands

Built-in run-time commands to activate verification tests for the user geometry are defined

- to start verification of geometry for overlapping regions based on a standard grid setup, limited to the first depth level geometry/test/run or geometry/test/grid_test
- applies the grid test to all depth levels (may require lots of CPU time!) geometry/test/recursive_test
- shoots lines according to a cylindrical pattern geometry/test/cylinder_test
- to shoot a line along a specified direction and position geometry/test/line_test
- to specify position for the line_test geometry/test/position
- to specify direction for the line_test geometry/test/direction

Debugging run-time commands

Example layout:

GeomTest: no daughter volume extending outside mother detected. GeomTest Error: Overlapping daughter volumes

The volumes Tracker[0] and Overlap[0],

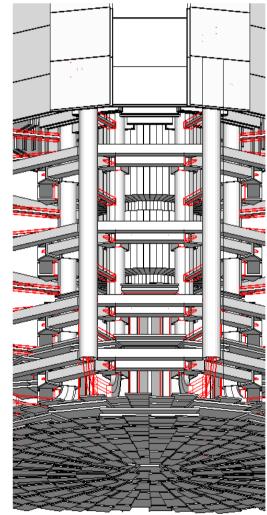
both daughters of volume World[0],

appear to overlap at the following points in global coordinates: (list truncated) length (cm) ----- start position (cm) ----- end position (cm) -----

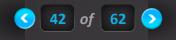
240 -240 -145.5 -145.5 0 -145.5 -145.5

Which in the mother coordinate system are:

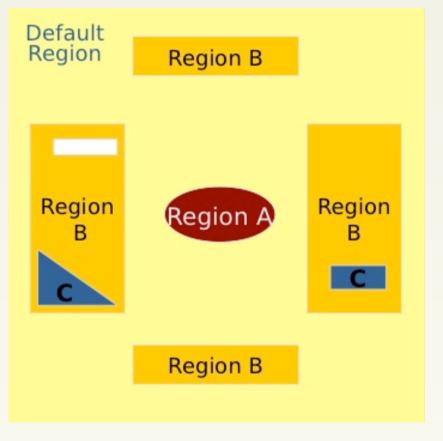
length (cm) ----- start position (cm) ----- end position (cm) ----- ... Which in the coordinate system of Tracker[0] are:


length (cm) ----- start position (cm) ----- end position (cm) ----- ... Which in the coordinate system of Overlap[0] are:

length (cm) ----- start position (cm) ----- end position (cm) ----- ...


Debugging run-time commands

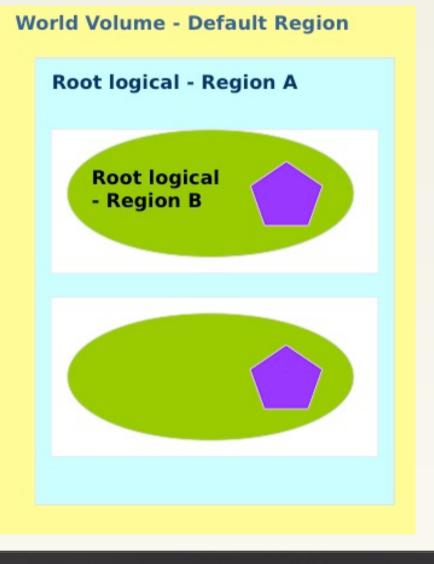
- DAVID is a graphical debugging tool for detecting potential intersections of volumes
- Accuracy of the graphical representation can be tuned to the exact geometrical description.
 - physical-volume surfaces are automatically decomposed into 3D polygons
 - intersections of the generated polygons are parsed.
 - If a polygon intersects with another one, the physical volumes associated to these polygons are highlighted in color(red is the default).
- DAVID can be downloaded from the Web as external tool for Geant4
- http://geant4.kek.jp/~tanaka/



南阁大学 Nankai University

Detector Region

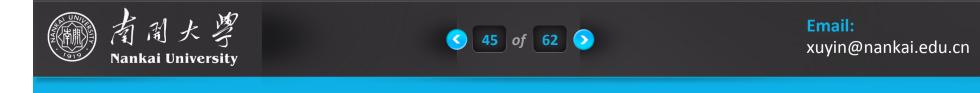
- Concept of **region**:
 - Set of geometry volumes, typically of a sub-system
 - barrel + end-caps of the calorimeter;
 - Or any group of volumes
- A region may have its unique
 - Production thresholds (cuts)
 - User limits
- Artificial limits affecting to the tracking, e.g. max step length, max number of steps, min kinetic energy left, etc.
- You can set user limits directly to logical volume as well. If both logical volume and associated region have user limits, those of logical volume wins.



有阁大學 Nankai University

Root Region

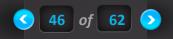
- World volume is recognized as the default region. (The default cuts defined in Physics list are used for it.)
 - User is not allowed to define a region to the world volume
- A logical volume becomes a root logical volume once it is assigned to a region.
 - All daughter volumes belonging to the root logical volume share the same region (and properties), unless a daughter volume itself becomes to another root logical volume
- Important restriction :
 - No logical volume can be shared by more than one regions, regardless of root volume or not



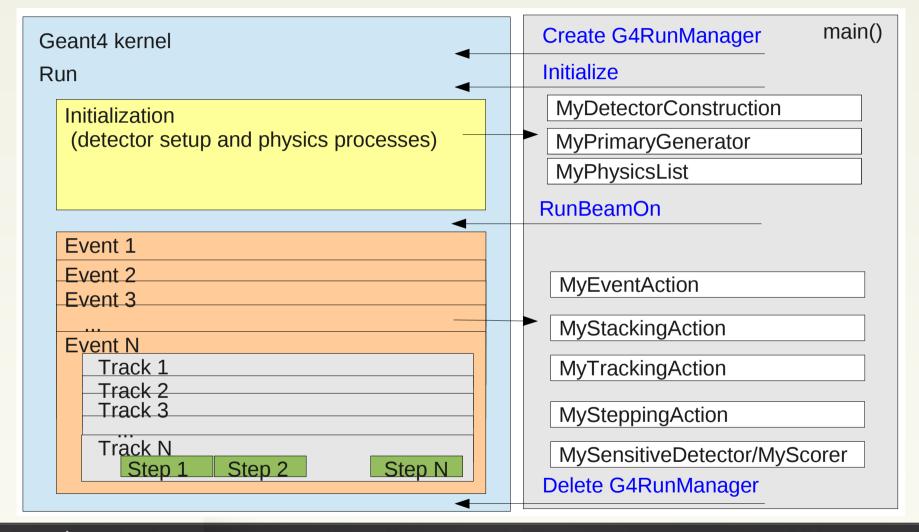
「乳」「別」クー子 Nankai University

G4Region

- A region is instantiated and defined by G4Region* aRegion = new G4Region("region_name"); aRegion->AddRootLogicalVolume(aLogicalVolume);
 - Region propagates down to all geometrical hierarchy until the bottom or another root logical volume.
- Production thresholds (cuts) can be assigned to a region by G4Region* aRegion =G4RegionStore::GetInstance()>GetRegion("region_n ame");
 G4ProductionCuts* cuts = new G4ProductionCuts; cuts->SetProductionCut(cutValue); aRegion->SetProductionCuts(cuts);

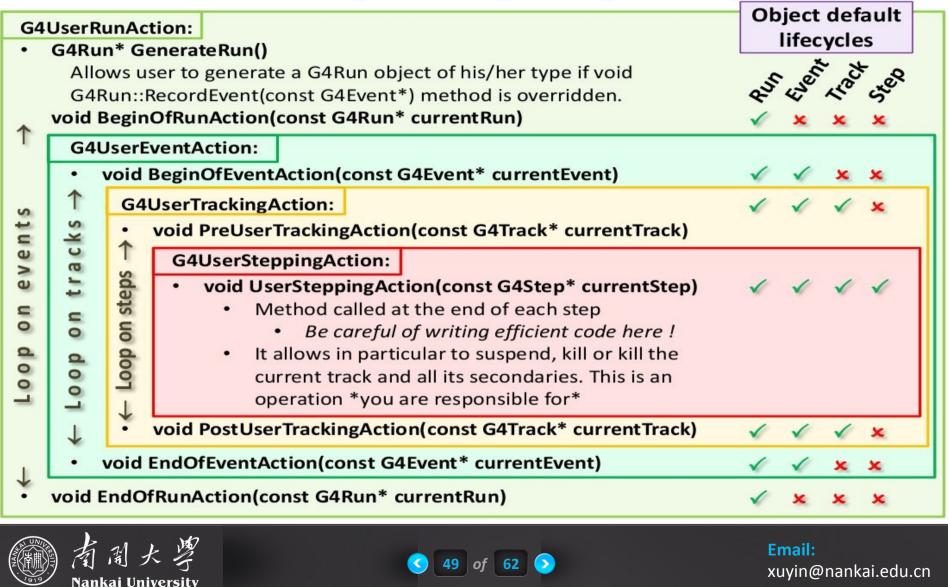


Extract useful information

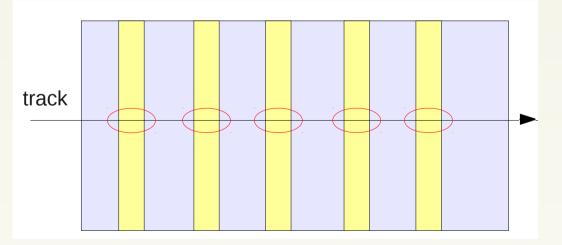

- Given geometry, physics and primary track generation, Geant4 does proper physics simulation "silently".
 - You have to add a bit of code to extract information useful to you.
- There are two ways:
 - Use user hooks (G4UserTrackingAction, G4UserSteppingAction, etc.)
 - You have full access to almost all information
 - Straight-forward, but do-it-yourself
 - Use Geant4 scoring functionality
 - Assign G4VSensitiveDetector to a volume
 - Hit is a snapshot of the physical interaction of a track or an accumulation of interactions of tracks in the sensitive (or interested) part of your detector.
 - Hits collection is automatically stored in G4Event object, and automatically accumulated if user-defined Run object is used.
 - Use user hooks (G4UserEventAction, G4UserRunAction) to get event / run summary

User Application and Geant4 Kernel

47 of 62


Getting Information from Geant4 Objects

- At each phase of run processing user can access the corresponding Geant4 objects:
 - G4Run, G4Event, G4Track, G4Step, G4StepPoint
 - Note that the objects are provided via constant pointer and so they cannot be modified in the user functions



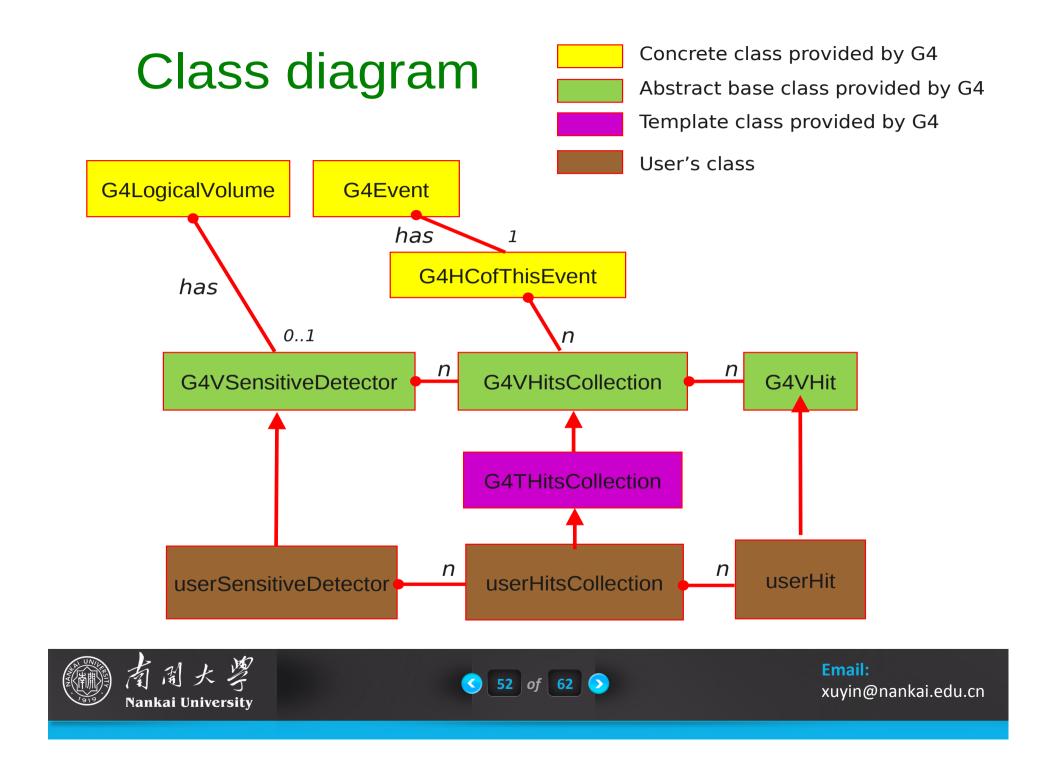
Sequence invocation of users actions and related (default) lifecycle objects

Sensitive Detector

- A sensitive detector (G4VSensitiveDetector) can be assigned to a logical volume (G4LogicalVolume).
 - The sensitive detectors are invoked only when a step takes place in a logical volume that they are assigned to
 - Users can implement their own sensitive detector classes

The sensitive detector will be invoked in all steps inside yellow layers

An example of an calorimeter with a sensitive detector assigned to yellow layers



Hit and Hits Collection

- When a step takes place in a sensitive logical volume, a user sensitive detector function ProcessHits(..) is invoked wher user can access to G4Step object and register hits
- Hit is a snapshot of the physical interaction of a track or an accumulation of interactions of tracks in the sensitive region of your detector
 - You can store various types information: position and time of the step, momentum and energy of the track, energy deposition of the step, geometrical information, ...
- Hit objects (G4VHit) must be stored in a dedicated collection (G4THitsCollection) which is available in the sensitive detector object.
- The collection will be the associated to a G4Event object and can be accessed
 - through G4Event at the end of event, to be used for analyzing an event
 - through G4SDManager during processing an event, to be used for event filtering.

Hit Class

```
#include "G4VHit.hh"
class MyHit : public G4VHit
 public:
   MyHit(some arguments);
   virtual \simMyHit();
   virtual void Draw();
   virtual void Print();
   // some set/get methods; eg.
   void
             SetEdep (G4double edep) { fEdep = edep; };
   G4double GetEdep() const
                                       { return fEdep; };
 private:
   // some data members; eq.
   G4double fEdep; // energy deposit
}:
#include "G4THitsCollection.hh"
typedef G4THitsCollection<MyHit> MyHitsCollection;
```

- Hit is a user-defined class derived from G4VHit.
- You can store various types information by implementing your own concrete Hit class.
 - In this example we store the energy deposition of the step
- Hit objects of a concrete hit class must be stored in a dedicated collection which is instantiated from G4THitsCollection template class.

Defining a Sensitive Detector

- Sensitive detector are defined and assigned to logical volumes in user detector construction class
- Each sensitive detector object must have a unique name. One detector object can be shared by more logical volumes.
- One logical volume cannot have more than one detector objects. But, one detector object can generate more than one kinds of hits
 - e.g. a double-sided silicon microstrip detector can generate hits for each side separately

MyDetectorConstruction.cc

// defined previously G4LogicalVolume* myLV = ...; G4VSensitiveDetector* mySD = new MySensitiveDetector("/mydet"); G4SDManager* sdManager = G4SDManager::GetSDMpointer(); sdManager->AddNewDetector(mySD);

myLV->SetSensitiveDetector(mySD);

Defining a Sensitive Detector

#include "G4VSensitiveDetector.hh"
#include "MyHit.hh"
class G4Step;
class G4HCofThisEvent;

class MySensitiveDetector : public G4VSensitiveDetector public:

MySensitiveDetector(G4String name); virtual ~MySensitiveDetector();

 Sensitive detector is a user-defined class derived from G4VSensitiveDetector

};

SD Implementation: Constructor

```
void MySensitiveDetector::MySensitiveDetector(G4String name)
  : G4VSensitiveDetector(name),
    fHitsCollection(0),
    fCollectionID(-1)
  {
    collectionName.insert("collectionName");
  }
```

- In the constructor, define the name of the hits collection which is handled by this sensitive detector
- In case your sensitive detector generates more than one kinds of hits (e.g. anode and cathode hits separately), define all collection names.

SD Implementation: Initialize()

```
void MySensitiveDetector::Initialize(G4HCofThisEvent* hce)
{
    if ( fCollectionID <0 ) fCollectionID = GetCollectionID(0);
    fHitsCollection
        = new MyHitsCollection (SensitiveDetectorName, collectionName[0]);
    hce->AddHitsCollection(collectionID,hitsCollection);
}
```

- This method is invoked at the beginning of each event.
- Get the unique ID number for this collection.
 - GetCollectionID() is available after this sensitive detector object is constructed and registered to G4SDManager.
- Instantiate hits collection(s) and attach it/them to G4HCofThisEvent object given in the argument.

SD Implementation: ProcessHits()

G4bool MySensitiveDetector::ProcessHits(G4Step* step,

```
G4TouchableHistory* /*ROhistory*/)
```

```
MyHit* hit = new MyHit();
// get some properties from G4Step and set them to the hit
fHitsCollection->insert(hit);
return true;
```

- This method is invoked for every steps in the volume(s) where this sensitive detector is assigned.
- In this method, generate a hit corresponding to the current step
- Currently, returning boolean value is not used.

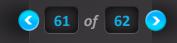
}

SD Implementation: EndOfEvent()

- This method is invoked at the end of processing an event.
 - It is invoked even if the event is aborted
 - It is invoked before UserEventAction::EndOfEventAction

Tracker and Calorimeter Detector Types

- A tracker detector typically generates a hit for every single step of every single (charged) track, it typically contains
 - Position and time
 - Energy deposition of the step
 - Track ID
- A calorimeter detector typically generates a hit for every cell, and accumulates energy deposition in each cell for all steps of all tracks, a calorimeter hit typically contains
 - Sum of deposited energy
 - Cell ID



Magnetic field

- Magnetic field class
 - Uniform field :
 - G4UniformMagField class object:
 - G4MagneticField* magField
 - = new **G4UniformMagField**(G4ThreeVector(0, 0, 1.*Tesla));
 - Non-uniform field :
 - User has to define his own concrete class derived from **G4MagneticField**, which implements the method **GetFieldValue**(..)

Magnetic field Example

B4DetectorConstruction.cc

```
#include "G4UniformMagField.hh"
#include "G4FieldManager.hh"
#include "G4TransportationManager.hh"
#include "G4GenericMessenger.hh"
void B4DetectorConstruction::SetMagField(G4double fieldValue)
 // Apply a global uniform magnetic field along X axis
 G4FieldManager* fieldManager
  = G4TransportationManager::GetTransportationManager()->GetFieldManager();
// Delete the existing magnetic field
 if (fMagField) delete fMagField;
 if (fieldValue != 0.) {
  // create a new one if not null
  fMagField
   = new G4UniformMagField(G4ThreeVector(fieldValue, 0., 0.));
  fieldManager->SetDetectorField(fMagField);
  fieldManager->CreateChordFinder(fMagField);
 else {
  fMagField = 0;
  fieldManager->SetDetectorField(fMagField);
```


Thanks

