

I. General presentation of Mokka software and database architecture, overview relationships between software and database II. Modifying detector geometry using steering commands

III. Creating new geometry with new drivers Get better understanding of internal structure of the code, learn how to create a driver template IV. Creating new geometry model in the database

Working with Mokka

Modify the geometry within Mokka parameters

Emilia BECHEVA Laboratoire Leprince-Ringuet – Ecole Polytechnique, CNRS

Motivations

Outline

- Brief reminder of Mokka SW-relationships
- Presentation of a basic steering file
 - Connect to the DB
 - Define a geometrical setup
 - \Rightarrow compose a steering file for launching Mokka
- Modifying the model geometry at launch time
 - remove detector
 - replace a sub-detector with another one
 - two ways for running only selected subdetector(s)
- Changing detectors parameters (general presentation)

Mokka SW-Relationships

Reminder

- Run Mokka => Mokka [option] mokka.streer
- As Mokka is a <u>Geant4 based application</u> in order to use it you have to:
- 1) Define a geometrical setup => choose a model
- 2) Define physics list
- 3) Generate primary event
- 4) Save physical information from sub-detectors
- 5) Visualization of the geometry

<u>mokka.steer</u>

Run control commands

• MySql connexion

Specific Mokka tasks

- Geometry
- Generator
- Physics list
- Output

E. BECHEVA, LLR – Ecole Polytechnique, CNRS

Presentation of a basic steering file

mokka.steer

Run control commands

- MySql connexion
- Geometry
- Generator
- Physics list
- Output

Connect to the Mokka database

 Connect to the database : all the information about the model/geometry is in the Mokka databases

/Mokka/init/dbHost pollin1.in2p3.fr ()

/Mokka/init/user consult

/Mokka/init/dbPasswd consult

pollin1.in2p3.fr is an alias to the physical mysql server llrmokka.in2p3.fr

These are default hardcoded values

Connect to the Mokka database

 Connect to a particular port on the MySQL server host host:port

/Mokka/init/dbHost pollin1.in2p3.fr /Mokka/init/dbHost pollin4.in5p6.fr:3306 (*default port*) /Mokka/init/dbHost pollin7.in8p9.fr:0xFCE2

Choosing a different port can be useful if you have multiple MySQL servers (differing in the assigned ports) running on the same machine.

Connect to the local host via a Unix socket file instead of TCP/IP.
 localhost:socket

/Mokka/init/dbHost localhost

/Mokka/init/dbHost localhost:/tmp/mysql-5.0.21.sock

/Mokka/init/dbHost localhost:/afs/cern.ch/user/j/jdoe/mokka/mysql.sock

Define a geometrical setup

mokka.steer

Run control commands

- MySql connexion
- <u>Geometry</u>
- Generator
- Physics list
- Output

 Choose a model
 A model is a set of sub-detectors with fixed geometry dimensions

/Mokka/init/detectorModel model_name

or

\$ Mokka -M <model name>

Models (1)

How to find informations about models

The Mokka Detector Model Database Browser by Adrian Vogels

http://www-flc.desy.de/ldcoptimization/tools/mokkamodels.php

Models (2)

Please pay attention

In some models and for some sub-detectors *sub_detector name* ≠ *C*++ *driver name*

Example:

<u>ILD_o3_v06</u> Sub-det name C++ driver

Example of a model ILD_o2_v06

mysql> select model, sub_	_detector, bu	uild_order fro	m ingredients
where model="ILD_o2_v0)6";		

model	sub_detector	build_order
+	+	++
ILD_02_v06	LHcal01	120
ILD_02_v06	tpc10_01	200
ILD_02_v06	ftd_simple_stagg	220
ILD_02_v06	SEcal05	90
ILD_02_v06	SHcalRpc01	110
ILD_02_v06	SCoil03	400
ILD_02_v06	yoke05	500
ILD_02_v06	LumiCalV	100
ILD_02_v06	tubeX06	150
ILD_02_v06	sit_simple_planar	210
ILD_02_v06	SField01	1000
ILD_02_v06	vxd07	20
ILD_02_v06	set_simple_planar	230

Generate primary event

mokka.steer

Run control commands

- MySql connexion
- Geometry
- <u>Generator</u>
- Physics list
- Output

Particle gun (Geant4)
 /generator/generator particleGun
 /gun/particle gamma
 /gun/position 0 0 0 mm
 /gun/direction 0.0 1.0 0.0
 /gun/momentum 10 GeV

/gun/phiSmearing 25 deg /gun/directionSmearingMode uniform /gun/thetaSmearing 25 deg

/run/beamOn 1

Define physics list

mokka.steer

Run control commands

- MySql connexion
- Geometry
- Generator
- Physics list
- Output

/Mokka/init/physicsListName LHEP

Available are all default physics lists provided with geant4, e.g. LHEP, QGSP,...

Default hardcoded physics list is **QGSP_BERT**

Save physical information from sub-detectors

mokka.steer

Run control commands

- MySql connexion
- Geometry
- Generator
- Physics list
- Output

Native ASCII format

- A « Run » corresponds to a directory
- Every sub-detector creates one or more hit files per event

LCIO

•

- Access to data via a high-level interface
- API for C, C++, Java and f77
- Automatically integrated to MARLIN

For more information => http://lcio.desy.de/

LCIO output

/Mokka/init/IcioFilename outLCIO_barrel_ref.slcio /Mokka/init/IcioWriteMode WRITE_NEW (or WRITE_APPEND) /Mokka/init/IcioStoreCalHitPosition true /Mokka/init/IcioDetailedShowerMode true

Mokka ASCII native output mode

Save the primaries trajectories only if the user didn't set up the -P option

- Set up the directory name

/Mokka/init/outDirName directory_name

Save primaries => eventxxxxx.kin output file
For each track to be saved saves the track ID,
the <u>PDG code</u>, the start position,
the <u>momentum</u> and the particle charge,
the <u>initial energy</u>, the parent ID and the <u>end position</u>.
/Mokka/init/savingPrimaries true

One file/event

Mokka.log Run.control ecal000000.hits event000000.kin event000000.steps

Default values are set to « true » so if directory name is set the primaries and the trajectories are automatically saved

- Save primary trajectories => *eventxxxxx.steps output file*

For each trajectory, saves only the steps attached to the primaries and at least 100 mm far each one.

/Mokka/init/savingTrajectories true

2014/08/11 G4-Mokka Training@NanKai U

MokkaGear output

- By default the data is automatically written into GearOutput.xml
- The destination can be changed to newGearFile in the steering file by using the init command:

/Mokka/init/MokkaGearFileName newGearFile

If the file already exists it will be overwritten. Not all parameters can be obtained during construction.

• Also, users might want to change parameters. Therefore two gear xml files can be merged. Using the steering file command

/Mokka/init/MokkaGearMergeSource mergedFile

will merge the automatically generated file with mergedFile. The result will be in the file specified in /Mokka/init/MokkaGearFileName.

Currently for the model ILD_o2_v06 all subdetectors (TPC, Ecal, Hcal, Yoke, Lcal, Lhcal, BeamCal, VXD, FTD, SIT, SET, Beam Pipe, Coil) are supported.

Visualize the geometry using Geant4 commands

• Draw all geometry

/vis/scene/create /vis/open OGLIX /vis/viewer/flush /vis/viewer/set/viewpointThetaPhi 70 20 /vis/viewer/zoom 1.5

• Visualize particular volume

Add following command to the commands above /vis/drawVolume BarrelEcalModule (This is physical volume name in Geant4 sens)

Visualize the geometry using Mokka commands (based on Geant4)

Several commands to help developers to debug new sub detector drivers, built in the new command: /Mokka/Visu/Detector/

- 1) Model * Set the rendering mode for a given sub detector and deep
- 2) Colour * Set the rendering color for a given sub detector deep
- 3) Daughters * Set the daughter's visibility for a given sub detector and deep
- 4) Visibility * Set the visibility for a given sub detector
- 5) ListGeometryTree * Prints the sub detector names, visibility and sub detector trees
- 6) ImmediateMode * Automatical refresh of the viewer after each command
- 7) Reset * Reset the vis attributes to the model default

The user can select the volume to have new visualisation attributes giving a sub detector name (ecal, vxd, hcal, etc.), a deep level in the geometry three and/or a logical volume name. For more information, please, type help and follow the command path.

Visionning models

• The user is able to interactively modify the model rendering, ex :

Idle> /Mokka/Visu/Detector/Visibility hcal false

Basic example of steering file

https://llrforge.in2p3.fr/viewvc/Mokka/tags/mokka-08-03/

 \Rightarrow mokka.steer

mokka.steer

/Mokka/init/detectorModel model_name /Mokka/init/dbHost <u>pollin1.in2p3.fr</u> /Mokka/init/user consult /Mokka/init/dbPasswd consult

/Mokka/init/physicsListName QGSP_BERT /Mokka/init/initialMacroFile initFile

/Mokka/init/IcioWriteMode WRITE_NEW /Mokka/init/IcioStoreCalHitPosition true

initFile

/vis/open OGLIX /vis/viewer/flush /vis/viewer/set/viewpointThetaPhi 70 20 /vis/viewer/zoom 1

/generator/generator particleGun /gun/particle gamma /gun/position 0 0 0 mm /gun/direction 0.0 1.0 0.0 /gun/momentum 10 GeV

/run/beamOn 1

2014/08/11 G4-Mokka Training@NanKai U

E. BECHEVA, LLR – Ecole Polytechnique, CNRS

Motivations

Start creating with Mokka

- Modify the model at lunch time
 - Modify model sub-detectors by modifying parameters => examples for VTX, ECAL and TPC

Modify the model

E. BECHEVA, LLR – Ecole Polytechnique, CNRS

Modifying the model geometry at launch time Remove detector

/Mokka/init/detectorModelmodel_name/Mokka/init/EditGeometry/rmSubDetectorsub_det1

Remove a subdetector from an existing detector model

/Mokka/init/detectorModel ILD_o2_v06 /Mokka/init/EditGeometry/rmSubDetector SEcal05

Information in the Mokka log file

Order for constructing detectors

Original model (ILD_o2_v06) recipe in database: Subdetector/build order Vxd07 / 20 SEcal05 / 90 LumiCalV / 100 SHcalRpc01 / 110 LHcal01 / 120 tubeX06 / 150 maskX03 / 160 tpc10_01 / 200 etc

Final model (based on ILD_o2_v06)

<u>Subdetector/build order</u> Vxd07 / 20 LumiCalV / 100 SHcalRpc01 / 110 LHcal01 / 120 tubeX06 / 150 maskX03 / 160 tpc10_01 / 200 etc

Replace a subdetector

E. BECHEVA, LLR – Ecole Polytechnique, CNRS

Replace a sub-detector with another one in existing model

/Mokka/init/detectorModel ILD_o2_v05 /Mokka/init/EditGeometry/rmSubDetector SEcal03p01 /Mokka/init/EditGeometry/addSubDetector SEcal05 90 (ILD_.._v06)

Original model (ILD_o2_v05) recipe in database: Final model Subdetector/bulid order Subdetector/bulid order Vxd07 / 20 Vxd07 / 20 SEcal03p01 / 90 LumiCalV / 100 **SEcal05 / 90** SHcalRpc01 / 110 LumiCalV /100 LHcal01 / 120 SHcalRpc01 / 110 tubeX06 / 150 LHcal01 / 120 maskX03 / 160 tubeX06 / 150 tpc10_01 /200 etc maskX03 / 160 tpc10_01 / 200 etc

E. BECHEVA, LLR – Ecole Polytechnique, CNRS

Modify the model

Run only selected detector

- Run only selected detector
- Get a model structure and drop all the sub-detectors /Mokka/init/detectorModel ILD_o2_v05 /Mokka/init/EditGeometry/rmSubDetector all
- Add particular sub-detector(s)

/Mokka/init/EditGeometry/addSubDetector SEcal05 90

Run only selected detector

Information in the Mokka log file

Connecting to the database "models03 » Asking for the model ILD_o2_v05: found. **Cooking the geometry, original model recipe in database:** (subdetector/database/driver/sub_driver/build_order) vxd07 / vxd07 / SVxd04 / vxd04 / 20 SEcal03p01 / VOID / SEcal04 / / 90

Edition commands

.

(0=add, 1=rm / name / build_order) 1 / all / 0 0 / SEcal05 / 90

Final model recipe after cooking it:

(subdetector/database/driver/sub_driver/build_order) SEcal05 / VOID / SEcal05 / / 90

Building sub_detector SEcal05, geometry db VOID, driver SEcal05:

Run more than one selected detectors

/Mokka/init/detectorModel ILD_o2_v05 /Mokka/init/EditGeometry/rmSubDetector all /Mokka/init/EditGeometry/addSubDetector SEcal05 90 /Mokka/init/EditGeometry/addSubDetector tpc10_01 200

Cooking the geometry, original model recipe in database:

(subdet/db/driver/sub_driver/build_order) vxd07 / vxd07 / SVxd04 / vxd04 / 20 SEcal03p01 / VOID / SEcal04 / / 90

tpc10_01 / tpc10_01 / tpc10 / / 200

Edition commands (0=add, 1=rm / name / build_order) 1 / all / 0 0 / SEcal05 / 90 0 / tpc10_01 / 200 Final model recipe after cooking it: (subdet/db/driver/sub_driver/build_order) SEcal05 / VOID / SEcal05 / / 90 tpc10_01 / tpc10_01 / tpc10 / / 200

Run only selected detector

In steering file: /Mokka/init/detectorModel ILD_o2_v06 /Mokka/init/subDetector SEcal05

On line when running Mokka Mokka –S <subdet name> mokka.steer

!!! Works also with the model ILD_o2_v05 even the subdetector SEcal05 is not included in this model.

E. BECHEVA, LLR – Ecole Polytechnique, CNRS

Run only selected detector(s)

Differences between two methods

- Mokka/init/EditGeometry/rmSubDetector all /Mokka/init/EditGeometry/addSubDetector SEcal05 90 /Mokka/init/EditGeometry/addSubDetector tpc10_01 200 and
 - /Mokka/init/subDetector SEcal05

1 can add more than one subdetectors even they are not included in the model

2-only <u>one</u> subdetector, even not be included in the model, if two subdetectors are given, <u>the second one is only constructed</u>!

Changing detectors parameters

• Change the geometry easy

/Mokka/init/globalModelParameter parameter_name value

• The steering file can contains several

/Mokka/init/globalModelParameter commands, so the user can setup several parameters before building the detector geometry.

- The values found in the steering file overwrite all the default values found in the parameters, model_parameters and setup (if a setup name was given) tables.
- All the geometry will be scaled accordingly new values
- See the parameters to change into db (easy with the Mokka web browser)

It Please pay attention to give a valid parameter name, the code does not check if it is correct; if it is not correct the job will not crash, the default value is used.

Changing detectors parameters

/Mokka/init/globalModelParameter

Ecal_barrel_number_of_tower 3

Correct parameter's name Ecal_barrel_number_of_towers

```
Global model parameter "Ecal_barrel_number_of_tower" set to "3 »
Connecting to the database "models03 »
```

```
••••
```

Building sub_detector SEcal05, geometry db VOID, driver SEcal05: A scalable ILD Ecal mixing Si and/or scintillator **Current parameters for the SEcal05 detector** :

```
Ecal_barrel_number_of_towers = 5
```

The calculations are performed using the default value 5

.

Changing Vertex detector parameters

Example of steering commands :

/Mokka/init/globalModelParameter VXD_inner_radius 15 /Mokka/init/globalModelParameter VXD_outer_radius 80

/Mokka/init/globalModelParameter VXD_radius_r1 15 /Mokka/init/globalModelParameter VXD_radius_r2 26 /Mokka/init/globalModelParameter VXD_radius_r3 37 /Mokka/init/globalModelParameter VXD_radius_r4 48 /Mokka/init/globalModelParameter VXD_radius_r5 60 /Mokka/init/globalModelParameter VXD_length_r1 50

/Mokka/init/globalModelParameter VXD_active_silicon_thickness 0.05

/Mokka/init/globalModelParameter VXD_side_band_electronics_width 1 /Mokka/init/globalModelParameter TUBE_central_thickness 0.2 /Mokka/init/globalModelParameter VXD_support_ladder_material "graphite" /Mokka/init/globalModelParameter VXD_support_ladder_thickness 0.05 /Mokka/init/globalModelParameter VXD_end_electronics_thickness 0.05 /Mokka/init/globalModelParameter VXD_cryostat_option 0

Changing TPC parameters

TPC_Ecal_Hcal_barrel_halfZ TPC_inner_radius TPC_outer_radius TPC_pad_height TPC_pad_width TPC_max_step_length

Changing ECAL geometry parameters

ECAL geometry in the code

Ecal geometry: the slab

E. BECHEVA, Laboratoire Leprince-Ringuet –

E. BECHEVA, Laboratoire Leprince-Ringueto- Ecole/Rollyteichnique, NBNRS

Main parameters that could be changed

Ecal_Barrel_halfZ Ecal_barrel_number_of_towers Ecal_cells_size Ecal_radiator_layers_set1_thickness Ecal_radiator_layers_set2_thickness Ecal_radiator_layers_set3_thickness Ecal_radiator_material Ecal_nlayers1, Ecal_nlayers2, Ecal_nlayers3 (of the active material) Ecal_Si_thickness/Ecal_Sc_thickness

- Hard-coded parameters in a Ecal Barrel:
 Number of staves, Number of modules in a stave
- Calculated parameters: Ecal_inner_radius, Ecal_outer_radius

Main parameters that could be changed

For optimization study of wafer dimension take into account: Ecal_Barrel_halfZ Ecal_barrel_number_of_towers Wafer_dimension Ecal_cells_size 2 wafers in z direction

Example of ECAL part in steering file

/Mokka/init/detectorModel ILD_o2_v06 /Mokka/init/globalModelParameter Ecal_nlayers1 20 /Mokka/init/globalModelParameter Ecal_nlayers2 9 /Mokka/init/globalModelParameter Ecal_nlayers3 0 /Mokka/init/globalModelParameter Ecal_radiator_layers_set1_thickness 2.1 /Mokka/init/globalModelParameter Ecal_radiator_layers_set2_thickness 4.2 /Mokka/init/globalModelParameter Ecal_radiator_layers_set3_thickness 0 /Mokka/init/globalModelParameter Ecal_radiator_material tungsten /Mokka/init/globalModelParameter Ecal_Si_thickness = 0.5

Switch from Si to Scintillator

The global model parameter "Ecal_Sc_Si_mix » allows to choose the sensitive detectors. It is a set of numbers - one for every layer pair - that can each have the following values

- 0 both layers are made of silicon « all sillicon »
- 1 both layers have scintillator strips oriented longitudinally in the slab (along the larger dimension of the slab)
- **2** both layers have scintillator strips oriented transverse to the slab (along the smaller dimension of the slab)
- 3 the first layer has scintillator strips oriented longitudinally in the slab (along the larger dimension of the slab) the second layer has scintillator strips oriented transverse to the slab (along the smaller dimension of the slab)
- 4 the first layer has scintillator strips oriented transverse to the slab (along the smaller dimension of the slab) the second layer has scintillator strips oriented longitudinally in the slab (along the larger dimension of the slab)

E. BECHEVA, LLR - Ecole Polytechnique, CNRS

Switch from Si to Scintillator

Since SEcal05 driver, thanks to <u>Daniel Jeans</u> implementation in the code, it is possible to mix silicon and scintillator within the same alveolus. The corresponding configurations are:

- **5**: sillicon Scintillator strip allong X
- 6: sillicon Scintillator strip allong Z
- 7: Scintillator strip allong X sillicon
- 8: Scintillator strip allong Z sillicon

Both the Barrel and EndCaps use the same 'Ecal_Sc_Si_mix' parameter, so they will have exactly the same combination of sensitive layers.

Examples:

ECAL « all scintillator »

- The scintillator strips version uses the same geometry as the 'all silicon' version: the same shapes and dimensions of barrel and endcap modules, towers. Only the 'H structures' are filled with different sensitive materials and connected ingredients (the scintillator layers have no 'ground' and glue layers, for example).
- Each 'H structure' has two slabs that are the same (either both silicon or both scintillator even if the scintillator layers can be oriented differently), as shown above.
- The scintillator strips are made of polystyrene and are coated by a reflector film made of G4_MYLAR. The multi-pixel photon counters are also implemented, and are made of polystyrene.

ECAL « all scintillator »

• The parameters connected to the scintillator version and their default values are:

Ecal_Sc_thickness

Ecal_Sc_reflector_thickness Ecal_Slab_Sc_PCB_thickness Ecal_Sc_MPPC_breadth Ecal_MPPC_size Ecal_Sc_N_strips_across_module Ecal_Sc_number_of_virtual_cells

 Separate hit collections are created for silicon and scintillator. For scintillator there are also two hit collections: one for longitudinal strips and one for transverse strips, since the meaning of the 'cell' indices is different and the treatment - corrections - depend on the direction along strips or transverse to the strips.

Confident and free when creating with Mokka

Check modifications with G4/Mokka tools

Where to find informations and help

Check modifications with G4/Mokka tools

- · Check if Mokka took into account what we asked
- Check if what Mokka did is OK

See the information in the Mokka log information

- model name
- parameters values
- detectors build order

Check the geometry

Methods for checking the geometry

- Geant4 Tools for geometry overlapping
 - Idle>/geometry/test/grid_test
 - Option pSurfChk=true in G4PVPlacement and in G4PVParameterised
 - Visual Overlap Checking
 - Propagate a geantino trough volumes and check using tracking verbose tools
- Check the geometry architecture using ASCII Tree
- Check the geometry using the hits

Conclusion

- The steering file allows to change easely the detector geometry
- We presented basics elements for a steering file
- We learned how by using the commands in the steering file

 to modify the model by dropping or replacing some subdetectors
 - to modify model sub-detectors by changing their parameters
 => focus on VTX, ECAL and TPC

Exercices

Try exercices that we reviwed during the presentation

1. Working with models

commands are in exercices_WorkingWithCommands.txt

2. Explore the parameters for different subdetectors in the web db browser

http://www-flc.desy.de/ldcoptimization/tools/mokkamodels.php

3. Run Mokka for vxd, tpc, ecal detectors

Credits

• Page 2 : photo

http://www.linkedin.com/today/post/article/ 20131202064053-175081329-how-to-become-amaster-of-creativity

Backup slides

Hard coded parameters default values

See Control class in Kernel svn directory

Some examples:

G4String Control::DBHOST=**"pollin1.in2p3.fr"**;

G4String Control::USER=**"consult"**;

G4String Control::DBPASSWD=**"consult"**;

G4String Control::PhysicsListName = **"QGSP_BERT"**;

G4double Control::RadiatorRangeCut = 0.005 * mm;

G4double Control::PCBRangeCut = 0.005 * mm;

G4double Control::ActiveRangeCut = 0.005 * mm;

G4double Control::RangeCut = 0.005 * mm;

G4double Control::TPCCut = 10 * MeV;

Geometry visuallisation with GDML

- Run Mokka in interactive mode (do not use BatchMode), type commands on line
- Get the list of logical volumes namesfor all geometry

/Mokka/Visu/Detector/ListGeometryTree

/Mokka/Visu/Detector/ListGeometryTree detector_class

Example: /Mokka/Visu/Detector/ListGeometryTree ecal

• To get the logical volume SlabLogical

/Mokka/Visu/Detector/DumpGDML detector-class logical-volume-name

Example: /Mokka/Visu/Detector/DumpGDML ecal SlabLogical

Obtain SlabLogical.gdml

• To get all the geometry

/Mokka/Visu/Detector/DumpGDML

 To visualize the geometry from *.gdml with ROOT: root[]TGeoManager::Import("logical-volume-name.gdml") root[]gGeoManager->GetTopVolume()->Draw("ogl")

Si layers: Alveoli & "H" slab structure

Parameters for Alveoli & "H" slab structure for <u>Sc strips</u>, <u>Z direction (parallel to beam)</u>

Ecal EndCap Module

Paulo Mora de Freitas, Gabriel Musat

ILD Software meeting, 27 January 2010

Ecal EndCap Ring

Paulo Mora de Freitas, Gabriel Musat

ILD Software meeting, 27 January 2010

Wafer dimension calculation

Change the Tracker

SiD detector models

- SiDBar00 implements the Si Tracker barrel and SiDFwd00 the Si Tracker end caps
- tubeSiD01, vxdSiD00 and ftdSiD00 are LDC devices adapted for the SiD dimensions
- ftdSiD00 works as the Si vxd disks for these models

SiD detector models

• Two models SiD01 and SiD02 /Mokka/init/detectorModel SiD02

The SiD tracker is composed of five barrels with five endplates. The z extent of the barrels increases with radius.

SiDBar00 and SiDFwd00 classes are in Mokka/trunk/source/Geometry/SiD

SiD Tracker

SiD models

To get more information about SiD models in Mokka:

- mokka.in2p3.fr: Go to **Detector Models -> SiD detector models**
- https://confluence.slac.stanford.edu/display/ilc/sidmay05