status of CEPC pre-CDR on detector

WANG Meng(王萌) Shandong University on behalf of the Physics & Detector WG CFHEP Symposium, Beijing, 2014.8.11

outline

- introduction
- on subsystems
 - physics analysis and optimization
 - vertexing (with silicon tracking)
 - tracking
 - calorimetry and muon
- summary & outlook

on accelerator > see GENG Huiping's talk

aims of detector pre-CDR

- clarify basic physics requirements
- determine detector challenges and performance requirements
- skeletonize a baseline detector design
- identify potential technologies
- figure out critical R&D's

➔ a cornerstone for a TDR (Technical Design Report) in the future

organization

- physics and detector WG: GAO Yuanning (THU), JIN Shan (IHEP)
- sub-groups
 - physics analysis and optimization:
 LI Gang, RUAN Manqi (IHEP), WANG Dayong (PKU)
 - vertexing: OUYANG Qun (IHEP), WANG Meng (SDU)
 - silicon tracking: TU Yanjun (HKU), ZHU Hongbo (IHEP)
 - tracking: LI Yulan (THU), QI Huirong (IHEP)
 - calorimetry and muon:HU Tao (IHEP), YANG Haijun (SJTU)

Strategy

- ILC detectors, especially ILD as a reference
- Special issues
 - Power pulsing not possible:
 - more cooling and/or less channels?
 - Limited to lower c.m.s. energy:
 - smaller detector
 - very fine granularity not necessary?
 - L* = 1.5m or 2.5m (cf. 3.5m at ILC) less solid angle coverage special considerations at the interaction region
- "The detector" in pre-CDR
 - Similar performance as ILD for the physics to be addressed
 - (Hopefully) less technology challenges than ILD

technical preparation for pre-CDR

(Pre-)Conceptual Design Report of Circular Electron-Positron Collider and Super Proton-Proton Collider in

- typeset with LaTeX
 - a template prepared

a subversion repository c

Contents

No. VO an analysis I D a star D a start of	1	Introduction	
re-)Conceptual Design Report of	1.1	Paragraphs of Text	7
Fircular Electron-Positron Collider	1.2	Citation	8
d Super Proton-Proton Collider in	1.3	Lists	8
	1.3.1	Numbered List	8
Gnina	1.3.2	Bullet Points	8
	1.0.0		0
voeset with Lalex		Physics performance	
XXX, I'I' and ZZZ	2.1	Introduction	9
	2.1.1	Physics objective	9
 a template prepared 	2.1.2	Benchmark luminosity & Detector performance	9
a template preparea	2.1.0	Division Devients	0
	221	Physics Performance of SM measurements	9
e e de la constante de la const	2.2.2	Z nole measurement	9
a subversion repository cr	97	Teor co-writing	5 9
	al. re	250GeV + 91.2 + 161 GeV)	2
	2.3	Indication of New Physics	9
- http://cencdoc ihen ac cn/s	23/	n/cencsyn/nCDR	9
	2.8.2		9
	2.4	Requirement on the detector performance?	9
	2.4.1	Accuracy of $Xsec/mass/Br(H \rightarrow inv)/Br(H \rightarrow mumu)$ measurement with different TF Size (radius & half-Z)	10
echnical subbort	2.4.2	Br(H->gammagamma) with different ECAL Design	10
	2.4.3	Flavor tagging performance with L^* & different VTX geometry & MD1	10

- technical support
 - LI Gang, WEN Shuoping (IHEP)

conveners: LI Gang, RUAN Manqi (IHEP), WANG Dayong (PKU)

DRUID, RunNum = 0, EventNum = 5401

PHYSICS ANALYSIS & OPTIMIZATION

layout of physics pre-CDR

Chapter X.1: General Introduction Mass, σ (ZH): Y. Yang, L. Yuan, G. Li, Chapter X.2: Higgs Measurements Br($H \rightarrow \mu \mu$): B. Wang, L. Yuan, G. Li Higgs at CEPC _ Br($H \rightarrow inv$): L. Yuan, etc Main observables _ Br(H \rightarrow bb, cc, gg): H. Yang, etc Global Fit (M. Chen, Y. Fang, T. Chen, etc) _ $Br(H \rightarrow WW)$: Z. Chen Interpretation (Y. Tu) _ Chapter X.3: SM Measurements Br(H \rightarrow TT): J. Liu, etc - LEP (Z. Liang) $Br(H \rightarrow \gamma \gamma)$: F. Wang, G. Li Neutrino Generation (Z. Liang) _ Br($H \rightarrow ZZ$): C. Feng, X. Yang, L. Shan, X. Li, Rare decay limits of Z & its daughters _ Br $(H \rightarrow Z \mathbf{Y})$? W mass, width & Triplet Gauge Boson _ Coupling (Q. Li, Y. Wu, etc) sigma(vvH)*Br(H \rightarrow bb): S. Liu Interpretation Higgs CP: N. Chen, Y. Tu Chapter X.4: Conclusion

Higgs analysis at CEPC

	CEPC @ 5 ab ⁻¹	Current Status	Responsable & perspective
mH (Model Independent)	8 Me∨	12 Me∀ (µµH)	IHEP, CCNU
σ(ZH)	0.7 %	1.2 %	IHEP, CCNU
Higgs CP		Theoretically Investigated	THU, HKU
$\Delta(\sigma^*Br)/(\sigma^*Br)$			
ZH, H→bb	0.4%	0.22% (qqH channel)	SJTU, IHEP
H→cc	2.1%	2.2 – 2.8%	SJTU, IHEP
H→gg	1.8%	1.8 – 2.4%	SJTU, IHEP
H→WW*	1.3%		IHEP, PKU
H→tt	1.2%	Efforts initialized	IHEP, USTC
H→ZZ*	5.1%		SDU
Н→үү	8%	~ 12% (vvH)	WhU, IHEP
H→µµ	?		UCAS, IHEP
H→Inv.	0.3%		IHEP, HKU, HKUST
vvH, H→bb	3.8%		PKU, IHEP

Optimistic Perspective By the end of 2014

To be validated by Full Simulation

Stat at Fast Simulation Level

some analyses on Higgs measurements

Arbor PFA

- generic PFA fully appreciating highgranularity Calorimeter System
 - Excellent separation & sub-shower structure recognition
- breakthrough at speed: < 1min to process an event with ~100k hits (eg, CMS detector with 140 pile-up)
- applied to Full Simulation at CEPC

CMS Experiment at LHC, CERN Data recorded: Thu Jan 1 01:00:00 1970 CEST Run/Event: 1 / 1 Lumi section: 1

12

VERTEXING & SILICON TRACKING

conveners: OUYANG Qun (IHEP), WANG Meng (SDU)

layout of vertex pre-CDR

- vertex detector
 - introduction (OUYANG Qun)
 - physics motivation (WANG Meng)
 - detector challenges and performance requirements (WANG Meng)
 - baseline design (OUYANG Qun)
 - sensor options (LU Yunpeng)
 - simulation and reconstruction (LIU Beijing)
 - mechanics and integration (DONG Mingyi)
 - critical R&D (WANG Meng)
 - cost estimation (OUYANG Qun)
- silicon tracker (ZHU Hongbo, TU Yanjun)

vertex detector

- Dedicated project to explore the feasibility of CMOS based pixel sensor technologies
 - already used for STAR and approved for ALICE ITS upgrade
 - candidate technologies for the ILC VTX
- Project kick-off meeting on 21 July formed a group of electronics/detector experts
 - identify the MPW (Multi-Project Wafer) availability of the promising CIS (CMOS Imaging Sensor) technologies
 - perform TCAD simulation and design the pixel cell structure
 ➔ important to submit test structure early next year to achieve better understanding
 - design in-pixel electronics and readout electronics
 - exploring to achieve fast readout but with low noise and low power consumption

Important preparation work for intensive R&D efforts from next year on

Silicon Tracker

"Silicon Envelope" surrounding TPC

- Silicon layers: SIT/SET/FTD/ETD
- Improved momentum resolution and better interface to Calorimeter/VTX
- Impact of removing SET (half of the silicon area, expensive) to be evaluated

<u>R&D prospects:</u>

- Silicon microstrip sensors: edgeless (< 100 µm), thin (< 200 µm), pitch adapter (connection to readout chip), large wafer size (4' available from domestic vendor but 8' preferred ← cost effective)
- Front-end electronics: low power consumption, low noise, 65nm CMOS technology, potential unified application with calorimeter readout
- Powering and cooling: DC-DC powering, air cooling (or more aggressive cooling, e.g. silicon micro-channel cooling)
- Mechanics: low mass supporting structure but with sufficient stiffness and stability, easy integration (and replacement), etc.

Radiation Background

- beam induced background imposes large impacts on detector design (e.g. detector occupancies, radiation damage, etc.)
- may degrade detector performance (additional noise in finding tracks/vertices)
- Guinea-Pig (beam-beam interaction simulation) + Geant4

two main processes: **beamstrahlung photons** + **pair production** The black line indicates the polar angle coverage of the vertex detector

conveners: LI Yulan (THU), QI Huirong (IHEP)

TRACKING

participants of tracking sub-group

Tsinghua University	Gao Yuanning, Li Yulan, Li Bo, Deng zhi
IHEP	Li Jin, Qi Huirong, Zhang Yulian
Shandong University	Zhu Chengguang
UCAS	Zheng Yangheng, Liu Qian, Wang Binlong
Lanzhou University	Hu Bitao, Zhang Yi
Nankai University	Fu <u>Chunxu</u> , Yang Yujiao
Shanghai Jiaotong University	Yang Haijun, Fu Changbo
Nanjing University	Zhang Huijun
CIAE	Li Xiaomei, Zhou Shuhua, Zhoujing, Hu Shouyang

layout of tracker pre-CDR

Contents	Prepared by
1 Overview	
1.1 PhysicsRequirement	7hu Changguang
1.2 Detector Options	Shandong Unviersity
1.3 TPC Review	Shandong Onviersity
1.4 Detector Layout	
2 Design of the TPC	
2.1 Physical Design	
2.2 Working Gas	Oi Huirong
2.3Structure	
2.3.1Chamber	IIILI
2.3.2Endplate	
2.3.3Field cage	
2.4Readout Module	Li Vulan
2.4.1 GEMs + pad readout	Tsinghua
2.4.2Micromegas + resistive pad readout	Isingilua
2.5Electronics	
2.5.1 FEE	Dengzhi
2.5.2 DAQ	Tsinghua
2.5.3 Cooling	

layout of tracking pre-CDR (cont'd)

	2.6 Support Structure2.7 Gas Supply system2.8 High Voltage system (V and I)	Zhangyi Lanzhou University
	 3 Calibration and Internal Alignment of the TPC 3.1 Alignment of the Tracking System 3.2 Hardware alignment system 3.3 Structural and Environmental Monitors 3.4 Track-based Alignment 3.5 Calibration Scheme 	Li bo Tsinghua
	4Challenge and pre-study	
	4.1 Challenge 4.1.1 IBF	Liu Qian UCAS
	4.1.2 Calibration	Li bo Tsinghua
	4.1.3 Electronics anti-irradiation	Dengzhi
	4.1.4 Power consume and control	Tsinghua
	4.2 Pre-study	
	4.2.1 Prototype design and construction	Oi Huirong
	4.2.1.1 Gas	IHEP
	4.2.1.2 Endplate	
	4.2.2 <u>Performance study (simulation and exp.)</u>	
	5 Cost: Merge with all section 6	ALL
-	Table : HV, GAS, Chamber,	

plans for simulation

- Mokka for detector simulation: the track of charged particle; energy deposit; particle decay and scattering.
- Digitization by MarlinTPC
 - Available gas: TDR, P10, P5, T2K
 - However, it seems that the progresses of gas amplification and charge distribution are very time-consuming.
- Two options for track reconstruction:
 - Clupatra
 - MarlinTPC: maybe more suitable for detailed TPC research; need further optimization.
- Occupancy
 - Input of beam parameters: luminosity, bunch crossing rate ...
 - The impact of occupancy on tracking and ion back flow.
- **TPC tracking performance in non-uniform magnetic field.** The effect of electron drifting should be also be considered.

simulation with geometry as ILD TPC

- half-Z: 2200 mm
- inner radius: 329 mm
- outer radius: 1808 mm
- pad pitch: 1.2 mm, height: 5.6 mm

test of a TPC prototype at THU

- cylinder length: 500 mm
- readout GEM: 100 x 100 mm²
- 10 x 62 pads, staggered placement
 - pad size: $9.5 \times 1.5 \text{ mm}^2$
 - pitch: 10 mm × 1.6 mm
- 10 x 32 pads used due to limited number of electronic channels

conveners: HU Tao (IHEP), YANG Haijun (SJTU)

CALORIMETRY & MUON

layout of Calorimeter pre-CDR 1st draft is circulating

- Introduction and general layout to calorimeters
- ECAL for Particle Flow Approach
 - Scintillator-Tungsten Sandwich WANG Zhigang (IHEP)
 - Silicon-Tungsten Sandwich Jean Claude Brient, Vincent Boudry (IN2P3)
- HCAL for Particle Flow Approach
 - DHCAL (ThGEM) YU Boxiang (IHEP)
 - DHCAL (RPC) XIA Lei (ANL/SJTU)
 - SDHCAL (GRPC) HAN Ran (NCEPU), Imad LAKTINEH (IPNL)
- Muon system XIE Yuguang (IHEP)
- Calorimeter Calibration and Alignment (included in sub-detector option)
- Front-End Readout System (included in sub-detector option)
- Power and Cooling System (included in sub-detector option)
- Cost Estimation (included in sub-detector option)

about DHCAL (ThGEM)

• Contents

- Introduction
- Digital Hadronic Gas Calorimeter
- The Active Layers
- Energy Reconstruction & Calibration
- Digital readout system
- Cost of THGEM DHCAL
- Reference

Content	Unit cost	Total require	Total cost
THGEM	0.8 yuan/cm ²	50 M cm ²	¥ 40 M
Electronics	8 yuan/channel	50 M channel	¥ 400 M
Absorber	30 k yuan/ton	1200 ton	¥ 36 M
total			¥ 476 M

about SDHCAL

Contents

- 1. Semi-digital HACL
 - 1.1 The semi-digital hadronic calorimeter concept
 - 1.2 Active layer unit
 - 1.2.1 GRPC detector
 - 1.2.2 Readout electronics
 - 1.2.3 cassette
 - 1.3 Technological SDHCAL prototype
 - 1.4 Optimization of the Calorimeter Design
 - 1.4.1 Detector optimization
 - 1.4.2 Other consideration for production

1.2.2 Readout electronics

- 1- Semi-digital readout.
- 2- HARDROC .
- 3- PCB
- 1.2.3 cassette
- 1- Description.

1.3 Technological SDHCAL prototype

1- Description 2- Construction 3- Commissioning 4- Test beam results.

1.4 Optimization of the Calorimeter Design

1.4.1 Detector optimization

- 1- Cell size optimization (stand alone simulation).
- 2- binary, semi-digital, analog readout options.
- 3- Optimization of the absorber thickness (stand alone simulation).
- 4- SDHCAL reconstruction algorithms optimization (stand alone simulation).
- 5- Simulation and reconstruction based on CEPC tool.

1.4.2 Other consideration for production

- 1- Mechanical structure.
- 2- Power consumption consideration : cooling
- 2- HCAL construction strategy.
- 2- the cost.
- 3- the future R&D.

about ECAL – simulation

ECAL simulation geometry Tungsten: 2mm/3mm/4mm Plastic Scintillator: 50 layers 2mm x 40cm x 40cm by WANG Zigang (IHEP)

Muon pre-CDR

- Introduction
- Physics requirement
- Baseline design
- Technologies
 - RPCs or Scintillator strips
- Cost estimation

		RPC		Scintillator strip		
Performance		****		****		
Long-term stability		$\star\star\star$		$\star\star\star\star\star$		
Mas	s production	Read	dy	Need development		
Glo	bal difficulty	Easy	,	Hard		
Cost	+	Nor	nal	higher		
Attro	action	Norr	mal	High		
	Item		Option	Baseline		
	Lb		3.6~5.6m	~4.6		
	Rin		2.5~3.5m	~3.0		
	Rout		4.5~5.5m	~5.0		
	Le		1.6~2.4m	~2.0		
	Re		0.6~1.0 m	~0.8		
	Segmentation		8/10/12	10		
	Number of layers		6~10	8(~3cm per layer)		
Total thickness of iron Solid angle coverage			6~10λ (λ=16.77cm)	8 (8/8/12/12/16/16/20/20/ 24cm, Sum=136cm)		
			0.92~0.96×4π	0.94		
Position resolution			$\sigma_{r\varphi}$:1.5~2.5cm	2cm		
			σ _z : 2~4cm	3cm		
	Detection efficiency		92%~98%	95%		
	Reconstruction efficiency($E_{\mu} > 6$ GeV)		92%~96%	94%		
	$P(\pi \rightarrow \mu)@40$ GeV		0.5%~3%	1%		
	Rate capability		50~100Hz/cm ²	60		
\rightarrow	Technology		RPC Scintillating strip Other	RPC		
	Total area		1100~1500m ²	~1300		
			Barrel	12000		
			Endcap	4000		
	Total channels		Total	$^{-1.6} \times 10^{4}$ (3cm strip width, 1-D readout, 2 ends for barrel, 1 end for endcap)		
	Total cost			$\sim 1.6 \times 10^7$ (1000RMB/ch, absorber not included)		

SUMMARY & OUTLOOK

summary

 All main components of the CEPC detector have had the pre-CDR layout defined, with corresponding authors assigned.

at least 50 persons involved

- A few R&D's have been carried out.
- The pre-CDR on CEPC detector has clear perspective.

Tight is a schedule, but possible *be* it will!
 see next slide for a Schedule Guideline

Schedule Guideline for CEPC pre-CDR

August – December 2014

Questions? Please contact Xinchou Lou (xinchou@ihep.ac.cn)

August 1-15	August 16-31	September 1-15	September 16-30	October 1-15	October 16-31	November 1-15	November 16-30	December 1-15	December 16-31
(1) pre-CDR draft version 0 from each (sub-)group (with all required elements, some contents may be missing); (2) identify loose ends & address them at the (sub)group level.									
 external formation 	l reviewers id on of editoria	lentified and in 1 board at SJTU	vitations sent ou J workshop; (4)	t during first p internal reviev	eriod; (2) add vs within (sub	itions and revi -)groups.	sions being wo	orked on;	
(1) revision civil en	n and finaliza gineering); (3	tion of pre-CDI 3) draft Introdu	R chapters; (2) i Iction and Sum	nternal review mary sections	s of chapters (available for (theory, detecto	r-simulation, a revisions.	accelerator, sit	e design and
 (1) reviews of chapters (theory, detector-simulation, accelerator, site design and civil engineering) by external review committees; (2) revisions of and improvements to the pre-CDR chapters. 									
(1) final edition (including Introduction & Summary) in English; (2) translation of pre-CDR into Chinese completed and reviewed.									
(1) proof; ((1) proof; (2) print and release to CAS and public.								

THANKS! 谢谢!

Geometry optimization and cost

- Optimized geometry with ILD as reference: reduce the total radius by 25%
- Assumption: 5 yr/1 detector & 0.8 10 yr/2 detector
- Total efficiency will be increased by ~ 1%

ILD Cost ~ 400 MILCU (PPP) CEPC detector ~ 270 MILCU ~ 1.6 Billion CNY ~ 3 B CNY for 2 detectors;

Without manpower

Total Cost as a function of TPC Radius

