Physics @ Hyper Z-Factory (HZF)

Chao-Hsi Chang (Zhao-Xi Zhang) ITP, CAS

Representative of the HZF Working Group

Aug.11, 2014

2nd CFHEP Symposium

Outline

Introduction

- 1. The working group
- 2. The Modernized Z-Factories (HZF)
- The Physics @ HZF
 - (Beyond and within SM)
 - 1. Precision tests of SM & clue for BSM
 - 2. physics (even physics)
 - 3. Flavor physics & QCD physics etc

Our working plan

Introduction

1. The working group was founded in 2009 (volunteered) due to realizing a modern factory is accessible in technique. The old ones: LEP-I: $\mathcal{L}_0 = 2.4 \cdot 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$ SLC: $\mathcal{L}_0 = 0.6 \cdot 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$ a modern one: $\mathcal{L} = 10^{3-5} \mathcal{L}_0$ even higher Z-boson events~ a few $10^{10\sim12}$ /year (more than Giga-Z) Focus on the physics @ the factory and its significance Indeed some progress is made. A special issue Sci. China. Phys. Mach. & Astron. 53 (2010), 2031-2036.

Introduction

HZF (also a factory for all flavors) :

- An e⁺e⁻ collider running at the Z resonance (properly apply the resonance effect)
- A factory for all kinds of fermions, except t-quark,
 - due to the resonance effect!

The old ones

- **LEP-I**: $\mathcal{L}_0 = 2.4 \cdot 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$
 - Scan 88GeV~94GeV

15.5 · 10⁶ hadronic events; 1.7 · 10⁶ leptonic events accumulated by the detectors: Aleph, Delphi, L3, Opal. SLC: $\mathcal{L}_0 = 0.6 \cdot 10^{31} \text{cm}^{-2} \text{s}^{-1}$

@Z-peak

0.6 • 10⁶ events accumulated by the detector: SLD (especially, electron beam: 70% polarization)

Aug.11, 2014

Introduction

The Hyper Z-Factories: $\mathcal{L} = 10^{3 \sim 5} \mathcal{L}_0$ even higher Events: $10^{10 \sim 12}$ Z/year and more Production (via Z-decay) of all flavors (except t) Decays of the flavors (with well-designed detectors)

Note: Circle or linear both are OK, but the requested luminosity by physics and the costs for constructing and running must be considered.

1. Precision & rare physics for Z-boson: Exp. measurements (LEP-I, SLC) vs Theor. prediction (SM)

Quantity	Value	Standard Model	Pull	Dev
10-3VI	170.0 + 1.8 + 0.6	171.1 + 1.0	0.1	0.5
Mar [CeV]	$170.9 \pm 1.8 \pm 0.8$ 80.428 ± 0.020	171.1 ± 1.9 80.975 ± 0.015	1.4	-0.0
MW [Gev]	80.326 ± 0.033	00.375 ± 0.015	0.0	0.5
M_{Z} [GeV]	91.1876 ± 0.0021	91.1874 ± 0.0021	0.1	-0.1
Γz [GeV]	2.4952 ± 0.0023	2.4968 ± 0.0010	-0.7	-0.3
r(had) [GeV]	1.7444 ± 0.0020	1.7434 ± 0.0010		
r(inv) [MeV]	499.0 ± 1.5	501.59 ± 0.08	_	_
$\Gamma(\ell^+\ell^-)$ [MeV]	83.984 ± 0.086	83.988 ± 0.016	_	_
ohad [nb]	41.541 ± 0.037	41.466 ± 0.009	2.0	2.0
Re	20.804 ± 0.050	20.758 ± 0.011	0.9	1.0
R_{μ}	20.785 ± 0.033	20.758 ± 0.011	0.8	0.9
R_{τ}	20.764 ± 0.045	20.803 ± 0.011	-0.9	-0.8
Rb	0.21629 ± 0.00066	0.21584 ± 0.00006	0.7	0.3
Rc	0.1721 ± 0.0030	0.17228 ± 0.00004	-0.1	-0.1
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01627 ± 0.00023	-0.7	-0.6
$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013		0.5	0.3
$A_{FB}^{(0,\tau)}$	0.0188 ± 0.0017		1.5	1.6
$A_{FB}^{(0,b)}$	0.0992 ± 0.0016	0.1033 ± 0.0007	-2.5	-2.0
$A_{FB}^{(0,c)}$	0.0707 ± 0.0035	0.0738 ± 0.0006	-0.9	-0.3
$A_{FB}^{(0,s)}$	0.0976 ± 0.0114	0.1034 ± 0.0007	-0.5	-0.4
57(ABB)	0.2324 ± 0.0012	0.23149 ± 0.00013	0.8	0.0
C	0.2238 ± 0.0050		-1.5	-1.0
Ac	0.15138 ± 0.00216	0.1473 ± 0.0011	1.9	2.
	0.1544 ± 0.0060		1.2	1.4
	0.1498 ± 0.0049		0.5	0.3
A_{μ}	0.142 ± 0.015		-0.4	-0.3
AT	0.136 ± 0.015		-0.8	-0.3
	0.1439 ± 0.0043		-0.8	-0.3
Ab	0.923 ± 0.020	0.9348 ± 0.0001	-0.6	-0.6
Ac	0.670 ± 0.027	0.6679 ± 0.0005	0.1	0.1
A_{S}	0.895 ± 0.091	0.9357 ± 0.0001	-0.4	-0.4
яL	0.3010 ± 0.0015	0.30386 ± 0.00018	-1.9	-1.8
9h	0.0308 ± 0.0011	0.03001 ± 0.00003	0.7	0.3
900	-0.040 ± 0.015	-0.0397 ± 0.0003	0.0	0.0
9A	-0.507 ± 0.014	-0.5064 ± 0.0001	0.0	0.0
Apv	$(-1.31 \pm 0.17) \cdot 10^{-7}$	$(-1.54 \pm 0.02) \cdot 10^{-7}$	1.3	1.5
$Q_W(C_s)$	-72.62 ± 0.46	-73.16 ± 0.03	1.2	1.5
$Q_W(T1)$	-116.4 ± 3.6	-116.76 ± 0.04	0.1	0.1
$\frac{\Gamma(b \rightarrow s\gamma)}{\Gamma(b \rightarrow X c\nu)}$	$(3.55^{+0.53}_{-0.46}) \cdot 10^{-3}$	$(3.19 \pm 0.08) \cdot 10^{-3}$	0.8	0.3
$\frac{1}{2}(g_{\mu}-2-\frac{\alpha}{2})$	4511.07(74) . 10-9	$4509,08(10) \cdot 10^{-9}$	2.7	2.3
τ_T [fs]	$290.93 \pm 0.48^{-24, -2}$	291.80 ± 1.76	-0.4	-0.4

The effective coupling Zff' (in tree and loops & especially when f, f' are leptons) constraints for new physics!

(look for evidences BSM)

SM works well so far, but the pulls are 'dominant' by experimental errors.

Exp. measurements (LEP-I, SLC) vs Theor. prediction (SM)

		Measurement with Total Error	Systematic Error	Standard Model fit	Pull
	$\Delta \alpha_{\rm had}^{(5)}(m_Z^2)$ [82]	0.02758 ± 0.00035	0.00034	0.02768	-0.3
n)	LEP-I				
	line-shape and				
	lepton asymmetries:				
	mg [GeV]	91.1875 ± 0.0021	(a)0.0017	91.1874	0.0
	Γ_{Z} [GeV]	2.4952 ± 0.0023	(a)0.0012	2.4959	-0.3
	σ_{had}^0 [nb]	41.540 ± 0.037	(6)0.028	41.478	1.7
	RĮ	20.767 ± 0.025	(6)0.007	20.742	1.0
	AFB	0.0171 ± 0.0010	(*)0.0003	0.0164	0.7
	+ correlation matrix [1]				
	τ polarisation:				
	$\mathcal{A}_{\ell}(\mathcal{P}_{\tau})$	0.1465 ± 0.0033	0.0016	0.1481	-0.5
	qq charge asymmetry:				
	$\sin^2 \theta_{\text{eff}}^{\text{lopt}}(Q_{\text{FB}}^{\text{had}})$	0.2324 ± 0.0012	0.0010	0.23139	0.8
b)	SLD				
	A_{ℓ} (SLD)	0.1513 ± 0.0021	0.0010	0.1481	1.6
c)	LEP-I/SLD Heavy Flavour				
	Rb	0.21629 ± 0.00066	0.00050	0.21579	0.8
	R _c ⁰	0.1721 ± 0.0030	0.0019	0.1723	-0.1
	A ^{0,b} _{FB}	0.0992 ± 0.0016	0.0007	0.1038	-2.9
	$A_{\rm FB}^{0,c}$	0.0707 ± 0.0035	0.0017	0.0742	-1.0
	$\mathcal{A}_{\rm b}$	0.923 ± 0.020	0.013	0.935	-0.6
	Ac	0.670 ± 0.027	0.015	0.668	0.1
	+ correlation matrix [1]				
d)	LEP-II and Tevatron				
	m _W [GeV] (LEP-II, Tevatron)	80.399 ± 0.023		80.379	0.9
	Γ _W [GeV] (LEP-II, Tevatron)	2.085 ± 0.042		2.092	0.2
	m_t [GeV] (Tevatron [43])	173.3 ± 1.1	0.9	173.4	-0.1

(Taken from arXiv:1012.2367)

It is difficult to suppress the expt. errors, but with better designed detectors and much higher statistics it is possible to improve the errors. At HZF it is expected.

Polarization beam is helpful !

arXiv:1310.6708

Quantity	Current theory error	Leading missing terms	Est. future theory error
$\sin^2 \theta_{\text{eff}}^{\ell}$	$4.5 imes10^{-5}$	$\mathcal{O}(\alpha^2 \alpha_s), \mathcal{O}(N_f^{\geq 2} \alpha^3)$	11.5×10^{-5}
R_b	$\sim 2\times 10^{-4}$	$\mathcal{O}(\alpha^2), \mathcal{O}(N_f^{\geq 2}\alpha^3)$	$\sim 1 imes 10^{-4}$
Γ_Z	few MeV	$\mathcal{O}(\alpha^2), \mathcal{O}(N_f^{\geq 2}\alpha^3)$	$< 1 { m MeV}$
M_W	$4 { m MeV}$	$\mathcal{O}(\alpha^2 \alpha_s), \mathcal{O}(N_f^{\geq 2} \alpha^3)$	$\lesssim 1~{ m MeV}$

Table 1-1. Some of the most important precision observables for Z-boson production and decay and the W mass (first column), their present-day estimated theory error (second column), the dominant missing higher-order corrections (third column), and the estimated improvement when these corrections are available (fourth column). In many cases, the leading parts in a large-mass expansion are already known, in which case the third column refers to the remaining pieces at the given order. The numbers in the last column are rough order-of-magnitude guesses.

The rare physics directly relating to Z-boson:

FCNC (lepton number violation) processes; CP violation processes (CPV); Weak dipole momentum: $d_f^{\ Z}$ etc.

Note: the couplings for the longitudinal component of Z-boson to a pair of fermions are proportional to the mass of the fermion $(\Box m_f)$!

Aug.11, 2014

2nd CFHEP Symposium

2. [-lepton (the heaviest lepton) physics An excellence place to study the [-lepton:

Based on SM: $m_{Z_{s}} Sin^{2}\theta_{W}$, α, Γ_{Z} , etc, the production rate (cross-section):

The cross-section around the threshold

The cross-section around Z-peak

 σ (cross-section) @ Z-peak ~0.62 σ @ the highest one (above the threshold)

~2.1 σ @ B-factory !

The cross-section @ Z-peak is greater than that @ B-factory !

The Lorentz boost effects for exp. []-physics is important:

□-lepton lifetime : **τ**= **0.2906** · **10**⁻¹² s

cτ≃ 87.11 µm (comparatively small);

Lorentz boost @ Z-factory : γ_{Z-fac} = 25.66, $c\tau \gamma \simeq 2235.2 \ \mu m$

For comparison:

B ⁺ -meson:	$\tau = 1.638 \cdot 10^{-12} s$	cτ≃ 491.1 µm
B ⁰ -meson:	$\tau = 1.525 \cdot 10^{-12} s$	cτ≃ 457.2 μm
B _s -meson:	$\tau = 1.472 \cdot 10^{-12} s$	cτ≃ 441 μm
D ⁺ -meson:	$\tau = 1.040 \cdot 10^{-12} s$	cτ≃ 311.8 μm
D ⁰ -meson:	τ= 0.4101· 10-12 s	cτ≃ 122.9 μm
D _s -meson:	$\tau = 0.500 \cdot 10^{-12} s$	cτ≃ 149.9 µm

With vertex detector the momentum-energy of the produced τ-leptonmay be well measured@ Z-factory, because γ is quite great indeed.Aug.11, 20142nd CFHEP Symposium13

I-lepton couples to Z-boson directly:

the data samples recorded between 1991 and 1995 with OPAL 69778 $\tau\text{-}\mathrm{pair}$ events

CPV of V
 $Z_{\tau\tau}$: $\operatorname{Re}(d_{\tau}^w) = (0.72 \pm 2.46 \pm 0.24) \times 10^{-18} e \text{ cm}$
(weak dipole)If we define: $\epsilon_{\tau} \equiv \frac{\Delta \Gamma_{Z^0 \to \tau^+ \tau^-}}{\Gamma_{Z^0 \to \tau^+ \tau^-}}$, where $\Delta \Gamma_{Z^0 \to \tau^+ \tau^-} = \frac{|d_{\tau}^w|^2}{24\pi} m_Z^3 \left(1 - \frac{4m_{\tau}^2}{m_Z^2}\right)^{3/2}$ The limit means: $\epsilon_{\tau} < 7.2 \times 10^{-3}$ using $|d_{\tau}^w|$ and
 $\epsilon_{\tau} < 8.9 \times 10^{-4}$ assuming $\operatorname{Im}(d_{\tau}^w) = 0$ $\Gamma_{Z^0 \to \tau^+ \tau^-} = (83.88 \pm 0.39)$ MeV
precision of the test of \mathcal{CP} invariance
a level of one in thousand

Statistics errors quite large, so there are rooms to improve the measurement(s) ! New result: It is greatly helpful that the direction of produced [] is measured.

Physics BSM:

SUSY Models, Multi-Higgs Model, Little Higgs Model, RPV SUSY, Extra Z-boson Model etc

The effective couplings $Zf'\bar{f}$

For leptons: $Z\tau\bar{\tau}, Z\mu\bar{\tau}, Z\tau\bar{\mu}, Z\tau\bar{\mu}, Z\tau\bar{\epsilon}$

It is expeced that Z-factory will offer the most precise constraint on them.

When f=f' is b-quark or c-quark or a light quarks $R_b \& R_c$

$$A_{\rm FB} \equiv \frac{\sigma(\cos\theta > 0) - \sigma(\cos\theta < 0)}{\sigma(\cos\theta > 0) + \sigma(\cos\theta < 0)} = \mathcal{R}_{\rm FB} \frac{3}{4} \mathcal{A}_e \mathcal{A}_f$$
$$A_{\rm LR} \equiv \frac{\sigma(\mathcal{P}_e > 0) - \sigma(\mathcal{P}_e < 0)}{\sigma(\mathcal{P}_e > 0) + \sigma(\mathcal{P}_e < 0)} = \mathcal{A}_e.$$

Aug.11, 2014

3. Flavor physics & QCD physics etc

- HZF complementary to super B-factory & []-charm factory: c, b-hadron physics (especially open bottom, baryons, excited states, X_b, Y_b, Z_b, etc)
- Double heavy hadrons H_{QQ'}:
 - B_{c} meson,, Ξ_{cc} , Ω_{cc} , Ξ_{bc} , Ω_{bc} , Ξ_{bb} , etc
 - $\& \ their excited \ states \ (easier to treat bg. than @LHCb \)$

Roughly theo. estimate $Br(Z[H_{QQ'}+....)[10^{-5} (more 10^{6} samples))$ thus to study them at HZF is OK, but at LEP-I is not !

- D-meson: D⁰ D

 ⁰ mixing: Due the Lorentz boost and the lifetime of D meson, at HZF the CP violation in the mixing can be observed, whereas it is impossible at B-factory & []- Charm factory.
- Fragmentation functions (FFs):

For example: FF of a (heavy) hadron (meson & baryon) from a quark c or b or a light quark or a gluon etc

Significance: Experimentally to use them for improving flavor tag in hadron collisions exp. etc. ; theoretically to test QCD & models etc.

Aug.11, 2014

Spectroscopy for heavy hadrons (especially open bottom)

For example:

 $e^{+}(p_{1}) + e^{-}(p_{2}) \rightarrow \gamma(p_{3}) + H_{Q\bar{Q}}(P)$ Two body final state! (monoenergy photon) $\stackrel{^{\gamma}}{\longrightarrow} \stackrel{^{\gamma}}{\longrightarrow} \stackrel{^{e}}{\longrightarrow} \stackrel{^{\gamma}}{\longrightarrow} \stackrel{^{\gamma}}{\longrightarrow} \stackrel{^{\varphi}}{\longrightarrow} \stackrel{^{\varphi}}{\longrightarrow$

Here $H_{Q\bar{Q}}$: η_c , J/ψ , \cdots η_b , Υ , \cdots $X_{c\bar{c}}$, \cdots $X_{b\bar{b}}$, \cdots

	${}^{3}S_{1}$	${}^{1}S_{0}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	${}^{1}P_{1}$
$\sigma_{(c\bar{c})}(pb)$	0.934	$0.662 imes 10^{-3}$	$0.328 imes 10^{-4}$	$0.197 imes 10^{-3}$	$0.661 imes 10^{-4}$	$0.615 imes 10^{-3}$
$\sigma_{(b\bar{b})}(pb)$	0.565×10^{-1}	0.475×10^{-2}	$0.128 imes 10^{-4}$	$0.838 imes 10^{-4}$	$0.930 imes 10^{-4}$	$0.833 imes 10^{-4}$

Spectroscopy for heavy hadrons (cont'd)

FIG. 2: (color online) Total cross sections for the processes $e^- + e^+ \rightarrow \gamma + H_{Q\bar{Q}}$ versus the collision energy. The red solid, the black dotted, the blue up-solid-triangle, the green dash-dotted, the red dashed and the down-hollow-triangle lines stand for $Q\bar{Q}$ in ${}^{3}S_{1}$, ${}^{1}S_{0}$, ${}^{3}P_{0}$, ${}^{3}P_{1}$, ${}^{3}P_{2}$, ${}^{1}P_{1}$ respectively. The left figure is for charmonium and the right one is for bottomonium.

Aug.11, 2014

2nd CFHEP Symposium

Spectroscopy for heavy hadrons (cont'd)

FIG. 3: (color online) Differential cross sections for the processes $e^- + e^+ \rightarrow \gamma + H_{Q\bar{Q}}$ versus $\cos \alpha$ at a C.M.S. energy as Z-mass. The red solid, the black dotted, the blue up-solid-triangle, the green dash-dotted, the red dashed and the blue down-hollow-triangle lines stand for $Q\bar{Q}$ in ${}^{3}S_{1}$, ${}^{1}S_{0}$, ${}^{3}P_{0}$, ${}^{3}P_{1}$, ${}^{3}P_{2}$, ${}^{1}P_{1}$ respectively. The left figure is for charmonium (the dotted line and the blue down-hollow-triangle almost emerge together almost) and the right one is for bottomonium (the red dashed line, the green dash-dotted line and the blue down-hollow-triangle emerge together almost).

Aug.11, 2014

2nd CFHEP Symposium

- **I**-lepton physics (**I**-lepton decays):
 - If 10¹² Z-bosons/year or higher, then 10¹⁰ -lepton pairs (more)/year with quite great Lorentz boost effects may be produced @ HZF.

Especially, the rare decays

 $\tau \rightarrow e\gamma, \ \tau \rightarrow \mu\gamma, \ \tau \rightarrow \overline{\mu}\mu\mu, \ \tau \rightarrow \mu\overline{e}e, \ \tau \rightarrow \overline{e}ee,$ etc and/or CPV in decay may reach to 10⁻¹⁰ level (even higher) !

• Neutrino physics:

The invisible width of Z-boson 3 (2.984 0.008) types of light neutrinos.

We think that we should estimate the number more carefully and to see how big a room left for the light neutrinos mixing with the sterile one and else. Aug.11, 2014 2nd CFHEP Symposium 21

• Neutrino physics (cont'd) :

The Feynman diagrams for the process $e^-e^+ \rightarrow \nu_e \bar{\nu}_e$

The Feynman diagram for the process $e^-e^+ \rightarrow \nu_l \bar{\nu}_i$ $(l = \nu, \tau).$

Q: May be used as a source of the monoenergy neutrinos ?

A: Yes, depends. Only when the luminosity of HZF reaches to higher than 10³⁶cm⁻²s⁻¹, the neutrinos can be detectable with a reasonable detector.

Solid curve is of e-neutrino; dished curve is of []- or []-neutrino. Aug.11, 2014 2nd Cl

 Non-perturbative fragmentation models: LUND , Webber Cluster, Quark Combination (ShangDong) Model etc.

It is the best place to determine the parameters and to test the models.

Our working plan

According to the latest group meeting:

- To continue finding and understanding characteristic and/or interesting physics at HZF.
- To choose some typical processes to study more guantitatively.
- To write a report and it contents:
 - 1. Accelerator:
 - 2. Detector(s):
 - 3. Physics:
 - Precision test SM
 - New clue BSM & rare processes
 - I-lepton physics
 - Flavor physics
 - QCD fragmentation functions
 - Spectroscopy for heavy flavor hadrons
 - Hadronization (non-perturbative QCD)

• A draft of the report is wished to complete within a half year.

Aug.11, 2014