A novel approach to access parton distribution functions

Jianhui Zhang INPAC, Shanghai Jiao Tong Univ.

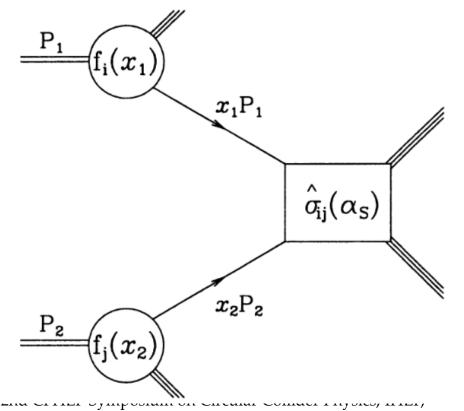
In collaboration with Xiangdong Ji, Xiaonu Xiong and Yong Zhao

2nd CFHEP Symposium on Circular Collider Physics, IHEP, Beijing, China

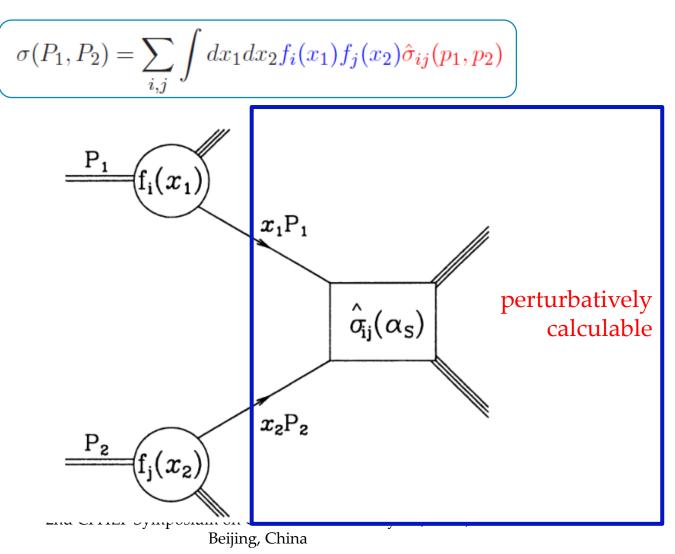
Content

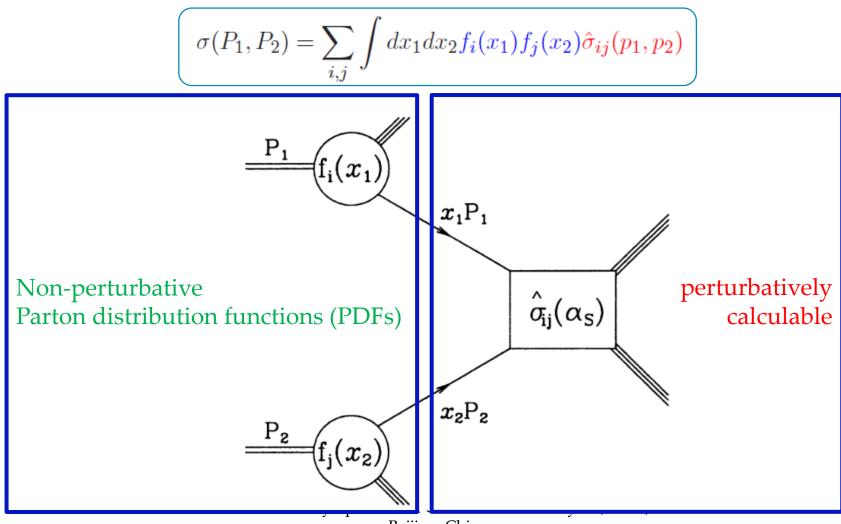
- Introduction
- Parton distribution
- Quasi parton distribution
 - What is quasi parton distribution?
 - How to recover parton distribution from it?
- Summary

$$\sigma(P_1, P_2) = \sum_{i,j} \int dx_1 dx_2 f_i(x_1) f_j(x_2) \hat{\sigma}_{ij}(p_1, p_2)$$



Beijing, China





$$\sigma(P_1, P_2) = \sum_{i,j} \int dx_1 dx_2 f_i(x_1) f_j(x_2) \hat{\sigma}_{ij}(p_1, p_2)$$

• PDFs

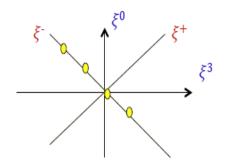
- Hadrons viewed as constituted by free point-like partons in high energy collision
- Characterize the probability of a parton having a given fraction x of the longitudinal momentum of parent hadron
- Conveniently formulated on the light-cone

• Operator definition of parton distribution

$$q(x,\mu^2) = \int \frac{d\xi^-}{4\pi} e^{-ix\xi^- P^+} \langle P | \overline{\psi}(\xi^-) \gamma^+ \exp\left(-ig \int_0^{\xi^-} d\eta^- A^+(\eta^-)\right) \psi(0) | P \rangle$$

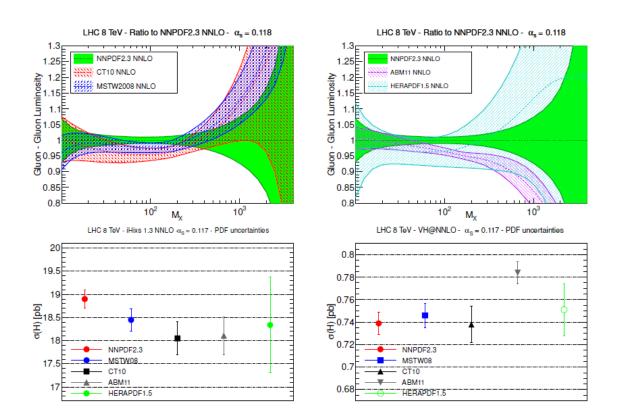
•
$$P^{\mu} = (P^0, 0, 0, P^z), \xi^{\pm} = \frac{t \pm z}{\sqrt{2}}, x = k^+/P^+$$

• Light-cone correlation



- Parton physics is manifest in light-front quantization
 - It becomes the expectation of light-front number operator in $A^+ = 0$ gauge

- Current strategy of determination
 - Extracted from experimental data
 - DIS, lepton pair production...
 - pQCD evolution
 - DGLAP equation
 - Different PDF sets
 - CTEQ, MSTW, NNPDF...



• Uncertainty in theoretical predictions

- On the lattice
 - Defined as light-cone correlation, PDFs are intrinsically Minkowskian, they cannot be directly computed using lattice QCD, which is a Euclidean approach
 - However, one can calculate their moments

$$\langle x^n(\mu^2) \rangle_q \equiv \int_0^1 dx \, x^n \, q(x,\mu^2)$$

- Parameterization and parameters determined from lattice computed moments
- Number of calculable moments limited

• On the lattice

Other possibility to directly access PDFs?

Quasi parton distribution

• Recall operator definition of parton distribution

$$q(x,\mu^2) = \int \frac{d\xi^-}{4\pi} e^{-ix\xi^- P^+} \langle P | \overline{\psi}(\xi^-) \gamma^+ \exp\left(-ig \int_0^{\xi^-} d\eta^- A^+(\eta^-)\right) \psi(0) | P \rangle$$

• Look instead at an off-light-cone quasi parton distribution [Ji, 13']

$$\tilde{q}(x,\Lambda,P^z) = \int_{-\infty}^{\infty} \frac{dz}{4\pi} e^{izk^z} \langle P | \overline{\psi}(0,0_{\perp},z) \gamma^z \exp\left(-ig \int_0^z dz' A^z(0,0_{\perp},z')\right) \psi(0) | P \rangle$$

- Quark fields separated along z-direction, no time dependence, $x = \frac{k^z}{P^z}$
- Light-cone distribution can be approached by this up to power suppressed corrections in large momentum limit

Quasi parton distribution

- From a lattice perspective, what is interesting is the quasi distribution at large but finite *P*^{*z*}
- It is different from the usual light-cone PDF only in finite but large or infinite momentum, therefore it shall have the same IR behavior as the light-cone PDF
- The connection can be established by a factor depending on UV physics only, and is thus perturbatively calculable

Quasi parton distribution

• How to recover PDF from the quasi one? [Ji, 13', Ji, Xiong, Zhang and Zhao, 13']

$$\tilde{q}(x,\Lambda,P^z) = \int \frac{dy}{|y|} Z\left(\frac{x}{y},\frac{\Lambda}{P^z},\frac{\mu}{P^z}\right) q(y,\mu)$$

- Can be viewed as a factorization theorem
- Soft divergences cancel on both sides
- Collinear divergences captured by quasi distribution
- Z factor sensitive to UV physics only, and thus perturbatively calculable

- LO simply a delta function
- NLO (in axial gauge $A^z = 0$)

• Remark:

• In infinite momentum frame, support of quark density comes from requirement of positivity of cut external legs, or from integration over *k*⁻

p

• On-shell partons cannot have negative plus-momentum fraction, 0<x<1

lllllll

p

• In finite momentum frame, support of quasi quark density comes from integration over k^0 , and the momentum fraction $-\infty < x < \infty$

One-loop quasi distribution

$$\begin{split} \tilde{q}(x,\Lambda,P^z) &= (1+\tilde{Z}_F^{(1)}(\Lambda,P^z))\delta(x-1) + \tilde{q}^{(1)}(x,\Lambda,P^z) + \dots \\ \tilde{q}^{(1)}(x,\Lambda,P^z) &= \frac{\alpha_S C_F}{2\pi} \begin{cases} \frac{1+x^2}{1-x}\ln\frac{x}{x-1} + 1 + \frac{\Lambda}{(1-x)^2P^z} \ , & x > 1 \ , \\ \frac{1+x^2}{1-x}\ln\frac{(P^z)^2}{m^2} + \frac{1+x^2}{1-x}\ln\frac{4x}{1-x} - \frac{4x}{1-x} + 1 + \frac{\Lambda}{(1-x)^2P^z} \ , & 0 < x < 1 \ , \\ \frac{1+x^2}{1-x}\ln\frac{x-1}{x} - 1 + \frac{\Lambda}{(1-x)^2P^z} \ , & x < 0 \ , \end{cases} \\ \tilde{Z}_F^{(1)}(\Lambda,P^z) &= \frac{\alpha_S C_F}{2\pi} \int dy \begin{cases} -\frac{1+y^2}{1-y}\ln\frac{y}{y-1} - 1 - \frac{\Lambda}{(1-y)^2P^z} \ , & x < 0 \ , \end{cases} \\ \frac{-\frac{1+y^2}{1-y}\ln\frac{(P^z)^2}{m^2} - \frac{1+y^2}{1-y}\ln\frac{4y}{1-y} + \frac{4y^2}{1-y} + 1 - \frac{\Lambda}{(1-y)^2P^z} \ , & 0 < y < 1 \ , \\ -\frac{1+y^2}{1-y}\ln\frac{y-1}{y} + 1 - \frac{\Lambda}{(1-y)^2P^z} \ , & y < 0 \ . \end{cases} \end{split}$$

No logarithmic UV divergence, but ln *P*^{*z*} instead in 0<x<1 region Momentum fraction not restricted to [0,1]

2nd CFHEP Symposium on Circular Collider Physics, IHEP,

Beijing, China

One-loop quasi distribution

$$\begin{split} \tilde{q}(x,\Lambda,P^z) &= (1+\tilde{Z}_F^{(1)}(\Lambda,P^z))\delta(x-1) + \tilde{q}^{(1)}(x,\Lambda,P^z) + \dots \\ \tilde{q}^{(1)}(x,\Lambda,P^z) &= \frac{\alpha_S C_F}{2\pi} \begin{cases} \frac{1+x^2}{1-x} \ln \frac{x}{x-1} + 1 + \frac{\Lambda}{(1-x)^{2P^z}} , & x > 1 \ , \\ \frac{1+x^2}{1-x} \ln \frac{(P^z)^2}{m^2} + \frac{1+x^2}{1-x} \ln \frac{4x}{1-x} - \frac{4x}{1-x} + 1 + \frac{\Lambda}{(1-x)^{2P^z}} \ , & 0 < x < 1 \ , \\ \frac{1+x^2}{1-x} \ln \frac{x-1}{x} - 1 + \frac{\Lambda}{(1-x)^{2P^z}} \ , & x < 0 \ , \end{cases} \\ \tilde{Z}_F^{(1)}(\Lambda,P^z) &= \frac{\alpha_S C_F}{2\pi} \int dy \begin{cases} -\frac{1+y^2}{1-y} \ln \frac{y}{y-1} - 1 - \frac{\Lambda}{(1-y)^{2P^z}} \ , & y > 1 \ , \\ -\frac{1+y^2}{1-y} \ln \frac{(P^z)^2}{m^2} - \frac{1+y^2}{1-y} \ln \frac{4y}{1-y} + \frac{4y^2}{1-y} + 1 - \frac{\Lambda}{(1-y)^{2P^z}} \ , & 0 < y < 1 \ , \\ -\frac{1+y^2}{1-y} \ln \frac{y-1}{y} + 1 - \frac{\Lambda}{(1-y)^{2P^z}} \ , & y < 0 \ . \end{cases} \end{split}$$

No logarithmic UV divergence, but ln *P*^{*z*} instead in 0<x<1 region Momentum fraction not restricted to [0,1]

2nd CFHEP Symposium on Circular Collider Physics, IHEP,

Beijing, China

One-loop quasi distribution

$$\begin{split} \tilde{q}(x,\Lambda,P^z) &= (1+\tilde{Z}_F^{(1)}(\Lambda,P^z))\delta(x-1) + \tilde{q}^{(1)}(x,\Lambda,P^z) + \dots \\ \tilde{q}^{(1)}(x,\Lambda,P^z) &= \frac{\alpha_S C_F}{2\pi} \begin{cases} \frac{1+x^2}{1-x}\ln\frac{x}{x-1} + 1 + \frac{\Lambda}{(1-x)^2P^z} \ , & x>1 \ , \\ \frac{1+x^2}{1-x}\ln\frac{(P^z)^2}{m^2} + \frac{1+x^2}{1-x}\ln\frac{4x}{1-x} - \frac{4x}{1-x} + 1 + \frac{\Lambda}{(1-x)^2P^z} \ , & 0 < x < 1 \ , \\ \frac{1+x^2}{1-x}\ln\frac{x-1}{x} - 1 + \frac{\Lambda}{(1-x)^2P^z} \ , & x<0 \ , \end{cases} \\ \tilde{Z}_F^{(1)}(\Lambda,P^z) &= \frac{\alpha_S C_F}{2\pi} \int dy \begin{cases} -\frac{1+y^2}{1-y}\ln\frac{y}{p-1} - 1 - \frac{\Lambda}{(1-y)^2P^z} \ , & y>1 \ , \\ -\frac{1+y^2}{1-y}\ln\frac{(P^z)^2}{m^2} - \frac{1+y^2}{1-y}\ln\frac{4y}{1-y} + \frac{4y^2}{1-y} + 1 - \frac{\Lambda}{(1-y)^2P^z} \ , & y<0 \ . \end{cases} \end{split}$$

No logarithmic UV divergence, but ln *P^z* instead in 0<x<1 region Momentum fraction not restricted to [0,1]

> 2nd CFHEP Symposium on Circular Collider Physics, IHEP, Beijing, China

17

One-loop light-cone distribution

$$\begin{split} q(x,\Lambda) &= (1+Z_F^{(1)}(\Lambda)+\dots)\delta(x-1) + q^{(1)}(x,\Lambda) + \dots \\ q^{(1)}(x,\Lambda) &= \frac{\alpha_S C_F}{2\pi} \left\{ \begin{array}{l} 0 \,, & x > 1 \text{ or } x < 0 \,, \\ \frac{1+x^2}{1-x} \ln \frac{\Lambda^2}{m^2} - \frac{1+x^2}{1-x} \ln (1-x)^2 - \frac{2x}{1-x} \,, \ 0 < x < 1 \,, \end{array} \right. \\ Z_F^{(1)}(\Lambda) &= \frac{\alpha_S C_F}{2\pi} \int dy \left\{ \begin{array}{l} 0 \,, & y > 1 \text{ or } y < 0 \,, \\ -\frac{1+y^2}{1-y} \ln \frac{\Lambda^2}{m^2} + \frac{1+y^2}{1-y} \ln (1-y)^2 + \frac{2y}{1-y} \,, \ 0 < y < 1 \,, \end{array} \right. \end{split}$$

Logarithmic UV divergence in 0<x<1 region Momentum fraction restricted to [0,1] Same mass singularity as the quasi distribution

2nd CFHEP Symposium on Circular Collider Physics, IHEP, Beijing, China

One-loop light-cone distribution

$$q(x, \Lambda) = (1 + Z_F^{(1)}(\Lambda) + \dots)\delta(x - 1) + q^{(1)}(x, \Lambda) + \dots$$

$$q^{(1)}(x,\Lambda) = \frac{\alpha_S C_F}{2\pi} \begin{cases} 0, & x > 1 \text{ or } x < 0 \\ \frac{1+x^2}{1-x} \ln \frac{\Lambda^2}{m^2} + \frac{1+x^2}{1-x} \ln (1-x)^2 - \frac{2x}{1-x} \\ 0 < x < 1 \end{cases},$$

$$Z_F^{(1)}(\Lambda) = \frac{\alpha_S C_F}{2\pi} \int dy \left\{ \begin{array}{ll} 0 \ , & y > 1 \ {\rm or} \ y < 0 \\ -\frac{1+y^2}{1-y} \ln \frac{\Lambda^2}{m^2} + \frac{1+y^2}{1-y} \ln \left(1-y\right)^2 + \frac{2y}{1-y} \ , \ 0 < y < 1 \ , \end{array} \right.$$

Logarithmic UV divergence in 0<x<1 region Momentum fraction restricted to [0,1] Same mass singularity as the quasi distribution

2nd CFHEP Symposium on Circular Collider Physics, IHEP, Beijing, China

• Matching between quasi and light-cone quark distribution

$$\tilde{q}(x,\Lambda,P^z) = \int \frac{dy}{|y|} Z\left(\frac{x}{y},\frac{\Lambda}{P^z},\frac{\mu}{P^z}\right) q(y,\mu)$$

• Z factor $Z\left(\xi, \frac{\Lambda}{P^z}, \frac{\mu}{P^z}\right) = \delta(\xi - 1) + \frac{\alpha_s}{2\pi} Z^{(1)}\left(\xi, \frac{\Lambda}{P^z}, \frac{\mu}{P^z}\right) + \dots$

$$Z^{(1)}(\xi)/C_F = \left(\frac{1+\xi^2}{1-\xi}\right) \ln \frac{\xi}{\xi-1} + 1 + \frac{1}{(1-\xi)^2} \frac{\Lambda}{P^z} , \qquad \xi > 1$$

$$Z^{(1)}(\xi)/C_F = \left(\frac{1+\xi^2}{1-\xi}\right)\ln\frac{(P^z)^2}{\mu^2} + \left(\frac{1+\xi^2}{1-\xi}\right)\ln\left[4\xi(1-\xi)\right] - \frac{2\xi}{1-\xi} + 1 + \frac{\Lambda}{(1-\xi)^2P^z}, \qquad 0 < \xi < 1$$

$$Z^{(1)}(\xi)/C_F = \left(\frac{1+\xi^2}{1-\xi}\right) \ln \frac{\xi-1}{\xi} - 1 + \frac{\Lambda}{(1-\xi)^2 P^z} \,. \qquad \xi < 0$$

Beijing, China

• Matching between quasi and light-cone quark distribution

$$\tilde{q}(x,\Lambda,P^z) = \int \frac{dy}{|y|} Z\left(\frac{x}{y},\frac{\Lambda}{P^z},\frac{\mu}{P^z}\right) q(y,\mu)$$

• Z factor $Z\left(\xi, \frac{\Lambda}{P^z}, \frac{\mu}{P^z}\right) = \delta(\xi - 1) + \frac{\alpha_s}{2\pi} Z^{(1)}\left(\xi, \frac{\Lambda}{P^z}, \frac{\mu}{P^z}\right) + \dots$

$$Z^{(1)}(\xi)/C_F = \left(\frac{1+\xi^2}{1-\xi}\right)\ln\frac{\xi}{\xi-1} + 1 + \frac{1}{(1-\xi)^2}\frac{\Lambda}{P^z}, \qquad \xi > 1$$

$$Z^{(1)}(\xi)/C_F = \left(\frac{1+\xi^2}{1-\xi}\right)\ln\frac{(P^z)^2}{\mu^2} + \left(\frac{1+\xi^2}{1-\xi}\right)\ln\left[4\xi(1-\xi)\right] - \frac{2\xi}{1-\xi} + 1 + \frac{\Lambda}{(1-\xi)^2P^z}, \qquad 0 < \xi < 1$$

$$Z^{(1)}(\xi)/C_F = \left(\frac{1+\xi^2}{1-\xi}\right)\ln\frac{\xi-1}{\xi} - 1 + \frac{\Lambda}{(1-\xi)^2P^z}. \qquad \xi < 0$$

Beijing, China

• Matching between quasi and light-cone quark distribution

$$\tilde{q}(x,\Lambda,P^z) = \int \frac{dy}{|y|} Z\left(\frac{x}{y},\frac{\Lambda}{P^z},\frac{\mu}{P^z}\right) q(y,\mu)$$

- Time-independent quasi distribution and perturbatively calculable matching factor allow a direct computation of parton distribution
- Infinite momentum result as an effective theory of finite momentum result, similar strategy can be applied to other quantities defined on the light-cone, can be formulated in terms of a large momentum effective theory (LaMET) [Ji, 14', Ji, Zhang and Zhao, to appear]

How does a LaMET work?

- Construct a frame-dependent, Euclidean quasi operator Õ that becomes in the infinite momentum limit the light-cone operator under investigation, and can be computed on the lattice
 - Choice of quasi operator is not necessarily unique
 - e.g. both P^0 and P^z approach P^+ in the infinite momentum limit
- The matrix element of the quasi operator \tilde{O} depends on external momentum *P* and UV cutoff Λ of the theory, $\tilde{O}(P, \Lambda)$

How does a LaMET work?

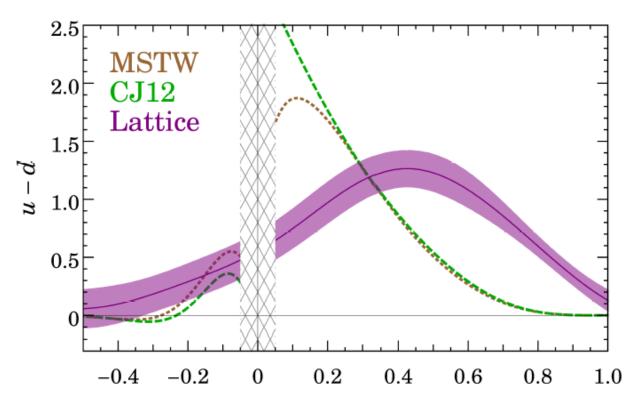
• Extract the infinite momentum (or light-cone) result $O(\mu)$ from $\tilde{O}(P, \Lambda)$ at large *P* through a factorization formula or matching condition

 $\tilde{O}(P,\Lambda) = Z(P/\Lambda,\mu/\Lambda)O(\mu) + \frac{c_2}{P^2} + \frac{c_4}{P^4} + \cdots$

- $\tilde{O}(P, \Lambda)$ has the same IR behavior as $O(\mu)$
- Z factor depends on UV physics only
- c_2 , c_4 denote corrections suppressed by power of external momentum

A first attempt

• [Lin, Chen, Cohen and Ji, 14']



х

2nd CFHEP Symposium on Circular Collider Physics, IHEP, Beijing, China

Summary

- Light-cone parton distribution or other quantities can be studied by investigating a related time-independent quantity at large momentum
 - Space-like correlation for parton distribution
- Allows calculation of parton distribution and related quantities on the lattice
- Matching required to connect quasi and light-cone distributions, but it depends on UV physics only, and therefore is perturbatively calculable

BACKUP SLIDES