Progress of the SM Working Group

Li Lin Yang (PKU)

On behalf of Qing-Hong Cao, Chong Sheng Li, Zhao Li, Zong Guo Si

2nd CFHEP Symposium on circular collider physics

Not too much

Contents

1	Sta	ndard	rd Model Physics			
	1.1	Introduction		1		
		1.1.1	Physics motivations	1		
		1.1.2	Theoretical challenges	5		
	1.2	Standa	ard Model Physics at the CEPC	6		
		1.2.1	Gauge couplings of third generation fermions with the Z boson	6		
		1.2.2	Other electroweak precision observables	7		
		1.2.3	Strong coupling constant α_s	7		
		1.2.4	Invisible decay width of the Z boson	8		
		1.2.5	Triple and quartic gauge boson couplings	8		
		1.2.6	Anomalous single top quark production	8		
	1.3	SPPC		8		
		1.3.1	Triple and quartic gauge boson couplings	8		
		1.3.2	Properties of the top quark	8		
		1.3.3	Parton distribution functions	9		
		1.3.4	Jet physics	10		
		1.3.5	Background processes	12		
			Many pieces missing!			
			Some studies in progress			

Man-power needed!

The Standard Model

- Our best theory about the subatomic world
- Definitely should be examined with higher precision and at higher energy
- Foundation to go "beyond the standard model"

Things to measure/test

- Fundamental parameters: 18(+1)
- Properties of the Higgs boson
- Properties of fermions
- Properties of gauge bosons

Knowledges needed for going beyond

- Precision calculations for SM/BSM processes
- Parton distribution functions
- Understanding boosted objects

Good approximation @ CEPC

Possibly (at least we hope) not valid @ SPPC

Parameters/observables

	Current	ILC	TLEP
m_Z	0.0023%	0.0018%	0.0001%
m_W	0.02%	0.004%	0.0006%
m_t	0.5%	0.02%	0.01%
$lpha_s$	0.5%	0.4%	0.08%

Examples:

	Current	ILC	TLEP
Γ_Z	0.09%	0.03%	0.004%
$\sin^2 heta_{ ext{eff}}^l$	0.07%	0.004%	0.0004%
R_b	0.3%	0.06%	0.02%
N_{ν}	0.27%	0.13%	0.03%

Studies dedicated to CEPC required! (e.g.: work of Liantao Wang *et al.* presented yesterday)

Interesting examples of higher dimensional operators

Triple and quartic gauge boson couplings

$$\mathcal{L}_{\text{EFT}} \supset \sum_{i} \frac{c_i}{\Lambda^2} O_i + \sum_{j=1,2} \frac{f_{S,j}}{\Lambda^4} O_{S,j} + \sum_{j=0,\dots,9} \frac{f_{T,j}}{\Lambda^4} O_{T,j} + \sum_{j=0,\dots,7} \frac{f_{M,j}}{\Lambda^4} O_{M,j}$$

Top quark flavor-changing neutral interactions

$$\begin{split} \mathcal{L}_{\rm EFT} &\supset \frac{\alpha_{uG\phi}^{ij}}{\Lambda^2} \, \bar{q}_L^i \lambda^a \sigma^{\mu\nu} u_R^j \, \tilde{\phi} \, G_{\mu\nu}^a + \frac{\alpha_{uB\phi}^{ij}}{\Lambda^2} \, \bar{q}_L^i \sigma^{\mu\nu} u_R^j \, \tilde{\phi} \, B_{\mu\nu} + \frac{\alpha_{uW\phi}^{ij}}{\Lambda^2} \, \bar{q}_L^i \tau_I \sigma^{\mu\nu} u_R^j \, \tilde{\phi} \, W_{\mu\nu}^I \\ &+ \frac{\alpha_{\phi q}^{1,ij}}{\Lambda^2} \, i (\phi^{\dagger} D_{\mu} \phi) (\bar{q}_L^i \gamma^{\mu} q_L^j) + \frac{\alpha_{\phi q}^{3,ij}}{\Lambda^2} \, i (\phi^{\dagger} \tau_I D_{\mu} \phi) (\bar{q}_L^i \gamma^{\mu} \tau_I q_L^j) \\ &+ \frac{\alpha_{\phi u}^{ij}}{\Lambda^2} \, i (\phi^{\dagger} D_{\mu} \phi) (\bar{u}_R^i \gamma^{\mu} u_R^j) + \frac{\alpha_{u\phi}^{ij}}{\Lambda^2} \, (\phi^{\dagger} \phi) (\bar{q}_L^i u_R^j \tilde{\phi}) + \mathcal{L}_{4f} \,, \end{split}$$

Challenges for theorists

- Complicated perturbative calculations, typically:
 - NNNLO QCD + NNLO EW @ CEPC
 - NNLO QCD + NLO EW @ SPPC
 - Resummation of various large logarithms
- Improving our knowledges about PDFs and jets

SM @ CEPC

Weak gauge coupling of the bottom quark

LEP1

Long-standing puzzle about the forward-backward asymmetry $A_{FB}^{(0,b)}$ 0.0992 ± 0.0016

Also a sign ambiguity for the right-handed Z-b-b coupling

> CEPC can help to resolve both issues

Systematic uncertainties?

Theory

 0.1034 ± 0.0007

Weak gauge coupling of the top quark

Energy not enough to produce a pair of on-shell top quarks

One on-shell and one off-shell possible:

$$e^+e^- \to \gamma/Z \to t\bar{t}^* \to b\bar{b}W^+W^-$$

Low cross section, but could be feasible with high luminosity

Systematic uncertainties?

Triple and quartic gauge boson couplings

 W^+W^- & single $W \longrightarrow WWA$ & WWZ couplings

Unfortunately no *WWZ* production, hence no sensitivity to WWZZ coupling

TODOs: Assess improvements over LEP **Electroweak corrections**

Single Top @ CEPC

$$e^+e^- \to \gamma/Z \to t\bar{c}$$

Probes flavor-changing neutral interactions of the top quark

Early theoretical studies:

LEP studies:

OPAL: hep-ex/0110009 ALEPH: hep-ex/0206070

Han, Hewett: hep-ph/9811237 Huang, Wu, Zhu: hep-ph/9901369 Bar-Shalom, Wudka: hep-ph/9905407 Aguila-Saavedra, Riemann: hep-ph/0102197 Cao, Liu, Yang: hep-ph/0311166

In progress: new analysis @ CEPC with QCD effects (Gao and LLY)

SM @ SPPC

Triple and quartic gauge boson couplings

The SPPC can explore all double and triple gauge boson production processes

Needs to understand boosted gauge bosons (see later)

Initial study on the *WWW* production and QGCs:

Wen, Qu, Yang, Yan, Li, Mao: 1407.4922

	No form	factor	$\Lambda = 1 \text{ TeV}, n=2$		$\Lambda = 0.5 \text{ TeV}, \text{ n}{=}2$	
	lower limit	upper limit	lower limit	upper limit	lower limit	upper limit
$\frac{f_{S0}}{\Lambda^4}$	-2.93×10^{-12}	3.04×10^{-12}	-1.65×10^{-9}	1.50×10^{-9}	-2.06×10^{-8}	2.15×10^{-8}
$\frac{\hat{f}_{S1}}{\Lambda^4}$	-1.30×10^{-12}	1.16×10^{-12}	-1.87×10^{-9}	2.37×10^{-9}	-2.75×10^{-8}	2.84×10^{-8}
$\frac{\hat{f}_{T0}}{\Lambda^4}$	-3.69×10^{-15}	2.97×10^{-15}	-9.18×10^{-12}	6.76×10^{-12}	-9.90×10^{-11}	7.30×10^{-11}

Table 13. Constraints on anomalous quartic couplings parameters f_{S0}/Λ^4 , f_{S1}/Λ^4 and f_{T0}/Λ^4 at 100 TeV future proton proton collider via WWW production pure leptonic decay channel with integrated luminosity of 3000 fb⁻¹. Units are in GeV⁻⁴.

More studies needed!

Top quark properties

- Mass and width
- Total and differential cross sections, asymmetries
- *Z-t-t* and *W-t-b* gauge couplings
- *H-t-t* Yukawa coupling
- Anomalous productions and decays

Production and decay

Current status:

NNLO QCD for total cross section

Czakon, Fiedler, Mitov: 1303.6254

NLO+NNLL QCD for various distributions

Many references! Sorry...

- NLO EW; mixed EW-QCD
- NNLO QCD for fully differential decay Gao, Li, Zhu: 1210.2808

Desired: fully differential production+decay with NNLO QCD + NLO EW + resummation

Issue: boosted top quarks (see later)

Charge asymmetry

Unresolved puzzle @ Tevatron

Several proposals to look @ LHC

Antunano, Kuhn, Rodrigo: 0709.1652 Wang, Xiao, Zhu: 1011.1428 Xiao, Wang, Zhou, Zhu: 1101.2507 Kuhn, Rodrigo: 1109.6830

Can SPPC say something about it?

Top FCNC

Many studies on the productions and decays for the LHC incorporating QCD effects

Hosch, Whisnant, Young: hep-ph/9703450 Han, Hosch, Whisnant, Young, Zhang: hep-ph/9806486 Liu, Li, **LLY**, Jin: hep-ph/0508016 Zhang, Li, Gao, Zhang, Li: 0810.3889 Gao, Li, Zhang, Zhu: 0910.4349 Zhang, Li, Gao, Zhu: 0910.4349 Zhang, Li, Gao, Zhu: 1101.5346 Li, Zhang, Li, Gao, Zhu: 1103.5122 Gao, Li, **LLY**, Zhang: 1104.4945

TODO: carry over analyses to the SPPC

PDFs

- Error from the PDFs has become one of the major sources to the systematic uncertainties of many measurements
- Need to be improved for the SPPC, especially the gluon PDF and the small-x region
- Recent proposals from Chinese Lattice QCD community may help
 See also talk by Jianhui Zhang
- PDFs for top, W, Z; EW correction/evolution

Gluon PDF

Can be constrained using Higgs production, top quark pair production and di-photon production

Boosted objects @ SPPC

- Identification (jet substructures)
- Theoretical calculation (large logarithms)
 - Mass logarithms
 - Electroweak Sudakov double logarithms

Jet substructures

- Hadronically decaying high-p₇ Higgs bosons, top quarks, W and Z bosons lead to "fat jets"
- Could be distinguished from QCD jets by studying their internal structures
- Many proposed methods for the LHC; should be revalidated for the SPPC

Two ways toward jet substructures

- Early investigations: purely numeric, based on Monte-Carlo event generators
- Analytic approaches based on QCD calculations
 - Jet mass / jet energy profile Li, Li, Yuan: 1107.4535, 1206.1344
 - Jet mass Kelly, Schwartz, Zhu: 1102.0561, 1112.3343
 - Mass-drop, trimming, pruning

Dasgupta, Fregoso, Marzani, Salam: 1307.0007

Fat jets?

• The typical size of, e.g., the Higgs jet behaves like

$$R \sim \frac{2m_H}{p_T}$$

- People usually talk about Higgs jets with $p_T \sim 200$ GeV, which means $R \sim 1.25$
- What about Higgs jets with $p_T \sim 1$ TeV at the SPPC?
 - *R* ~ 0.25 similar to the typical size of QCD jets
 Not fat anymore?

Mass logarithms

Example: top quarks produced with very high energies (not necessarily high p_T)

 $\ln(m_t/E)$

Resummation: parton distribution functions, fragmentation functions and jet functions for the top quark

High-p₇ boosted tops

Large logarithms resummed into top FFs/JFs

Resummation framework:

Ferroglia, Pecjak, **LLY**: 1205.3662, 1207.4798, 1306.1537; +Marzani: 1310.3836

$$C_{ij}(z, M, m_t, \cos \theta, \mu_f) = C_D^2(m_t, \mu_f) \operatorname{Tr} \left[\boldsymbol{H}_{ij}(M, t_1, \mu_f) \, \boldsymbol{S}_{ij}(\sqrt{\hat{s}}(1-z), t_1, \mu_f) \right]$$
$$\otimes C_{ff}^{ij}(z, m_t, \mu_f) \otimes C_{t/t}(z, m_t, \mu_f) \otimes C_{t/t}(z, m_t, \mu_f)$$
$$\otimes S_D(m_t(1-z), \mu_f) \otimes S_D(m_t(1-z), \mu_f) + \mathcal{O}(1-z) + \mathcal{O}\left(\frac{m_t}{M}\right)$$

In progress: numerical studies for the SPPC

Low-p₇ boosted tops

CTEQ Preliminary Gluon <u>U</u>р Down 10² Strang Charm $^{10}_{01}$ x PDF (x, Q = 20 TeV) **Botton** Тор 10^{-2} 10^{-3} 10⁻² x 10^{0} 10^{-1}

Large logarithms resummed into top PDFs

See also talk by Joshua Sayre

Electroweak Sudakov

- At high energies, the *W* and *Z* bosons are effectively massless
- Soft/collinear → Sudakov double logarithms
- Resummation framework

Chiu, Golf, Kelley, Manohar: 0709.2377, 0712.0396

• A few studies for the LHC; effects should be more important for the SPPC

Investigations needed

SM processes @ 100 TeV

Wish-list from 1405.1067

Process	State of the Art	Desired
Н	$d\sigma \otimes NNLO QCD$ (expansion in $1/m_t$)	$d\sigma @ NNNLO QCD (infinite-m_t limit)$
	full m_t/m_b dependence @ NLO QCD	full $m_{\rm t}/m_{\rm b}$ dependence @ NNLO QCD
	and @ NLO EW	and @ NNLO QCD+EW
	NNLO+PS, in the $m_t \to \infty$ limit	NNLO+PS with finite top quark mass effects
H+j	$d\sigma @ NNLO QCD (g only)$	$d\sigma @ NNLO QCD (infinite-m_t limit)$
	and finite-quark-mass effects	and finite-quark-mass effects
	@ LO QCD and LO EW	@ NLO QCD and NLO EW
H + 2j	$\sigma_{\rm tot}({\rm VBF})$ @ NNLO(DIS) QCD	$d\sigma(VBF)$ @ NNLO QCD + NLO EW
	$d\sigma(VBF)$ @ NLO EW	
	$d\sigma(gg) @ NLO QCD (infinite-m_t limit)$	$d\sigma(gg) @ NNLO QCD (infinite-m_t limit)$
	and finite-quark-mass effects @ LO QCD	and finite-quark-mass effects
		@ NLO QCD and NLO EW
H + V	$d\sigma$ @ NNLO QCD	with $H \rightarrow b\bar{b}$ @ same accuracy
	$d\sigma @ NLO EW$	$d\sigma(gg)$ @ NLO QCD
	$\sigma_{\rm tot}({\rm gg}) @ {\rm NLO \ QCD} \ ({\rm infinite} - m_{\rm t} \ {\rm limit})$	with full $m_{\rm t}/m_{\rm b}$ dependence
tH and	$d\sigma$ (stable top) @ LO QCD	$d\sigma$ (top decays)
$\overline{\mathrm{t}}\mathrm{H}$		@ NLO QCD and NLO EW
ttH	$d\sigma$ (stable tops) @ NLO QCD	$d\sigma$ (top decays)
		@ NLO QCD and NLO EW
$gg \to HH$	$d\sigma @ NLO QCD (leading m_t dependence)$	$d\sigma @ NLO QCD$
	$d\sigma @ NNLO QCD (infinite-m_t limit)$	with full $m_{\rm t}/m_{\rm b}$ dependence

SM processes @ 100 TeV

Wish-list from 1405.1067

Process	State of the Art	Desired
$\overline{t}\overline{t}$	$\sigma_{\rm tot}({\rm stable \ tops})$ @ NNLO QCD	$d\sigma$ (top decays)
	$d\sigma$ (top decays) @ NLO QCD	@ NNLO QCD + NLO EW
	$d\sigma$ (stable tops) @ NLO EW	
$t\bar{t} + j(j)$	$d\sigma$ (NWA top decays) @ NLO QCD	$d\sigma$ (NWA top decays)
		@ NNLO QCD + NLO EW
$\overline{t}\overline{t} + Z$	$d\sigma$ (stable tops) @ NLO QCD	$d\sigma$ (top decays) @ NLO QCD
		+ NLO EW
single-top	$d\sigma$ (NWA top decays) @ NLO QCD	$d\sigma$ (NWA top decays)
		@ NNLO QCD + NLO EW
dijet	$d\sigma @ NNLO QCD (g only)$	$d\sigma @ NNLO QCD + NLO EW$
	$d\sigma @ NLO EW (weak)$	
3j	$d\sigma @ NLO QCD$	$d\sigma @ NNLO QCD + NLO EW$
$\gamma + j$	$d\sigma @ NLO QCD$	$d\sigma @ NNLO QCD + NLO EW$
	$d\sigma @ NLO EW$	

SM processes @ 100 TeV

Wish-list from 1405.1067

Process	State of the Art	Desired
V	$d\sigma$ (lept. V decay) @ NNLO QCD	$d\sigma$ (lept. V decay) @ NNNLO QCD
	$d\sigma$ (lept. V decay) @ NLO EW	and @ NNLO QCD+EW
		NNLO+PS
V + j(j)	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma(\text{lept. V decay})$
	$d\sigma(\text{lept. V decay}) @ \text{NLO EW}$	@ NNLO QCD + NLO EW
VV'	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma$ (decaying off-shell V)
	$d\sigma$ (on-shell V decays) @ NLO EW	@ NNLO QCD + NLO EW
$gg \rightarrow VV$	$d\sigma(V \text{ decays}) @ LO QCD$	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$
$V\gamma$	$d\sigma(V \text{ decay}) @ \text{NLO QCD}$	$d\sigma(V decay)$
	$d\sigma(PA, V decay) @ NLO EW$	@ NNLO QCD + NLO EW
Vbb	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay) @ NNLO QCD
	massive b	+ NLO EW, massless b
$VV'\gamma$	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$
		@ NLO QCD + NLO EW
VV'V"	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$
		@ NLO QCD + NLO EW
VV' + j	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V decays)$
		@ NLO QCD + NLO EW
VV' + jj	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$
		@ NLO QCD + NLO EW
$\gamma\gamma$	$d\sigma @ NNLO QCD + NLO EW$	q_T resummation at NNLL matched to NNLO

Contents

1	Star	ndard I	Model Physics	1
	1.1	Introd	uction	1
		1.1.1	Physics motivations	1
		1.1.2	Theoretical challenges	5
	1.2	Standa	ard Model Physics at the CEPC	6
		1.2.1	Gauge couplings of third generation fermions with the Z boson	6
		1.2.2	Other electroweak precision observables	7
		1.2.3	Strong coupling constant α_s	7
		1.2.4	Invisible decay width of the Z boson	8
		1.2.5	Triple and quartic gauge boson couplings	8
		1.2.6	Anomalous single top quark production	8
	1.3	SPPC		8
		1.3.1	Triple and quartic gauge boson couplings	8
		1.3.2	Properties of the top quark	8
		1.3.3	Parton distribution functions	9
		1.3.4	Jet physics	10
		1.3.5	Background processes	12

Thank you and contributions appreciated!