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Organization & Manpower

* |HEP
— OUYANG Qun, co-convener

— Faculty:
LU Yunpeng, DONG Mingyi, QIN Zhonghua, ZHU Hongbo,
LOU Xinchou — detector

LIU Beijiang, WU Linghui — simulation
— Post-Doc: XIU Qinglei — simulation
— Graduate students: JU Xudong — detector
* SDU
— WANG Meng, co-convener
— Faculty: ZHANG Liang — sensor technology
— Graduate students: LIU Qingyuan — simulation

* HKU
— Faculty: TU Yanjun — simulation
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Pre-CDR Status

* \Vertex:
- 4 pages of simulation and optimization
- 2 pages of sensor option

1 page of mechanics and integration

» Sitracker: 3 pages covering the baseline design, performance,
critical R&D items, integration and cost estimation.

b simsiasion Layoss.

1 THE SILICON TRACKER 2

1.3 Critical RED
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132 Fromt-ond cloctromics
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Detector challenges and performance requirements

CEPC detector will keep the same
ILD:B=3.5T . .
vertexing and tracking performance
» momentum resolution oy, =2x107 @1x107 /(p, sin )
: : 10
» impact parameter resolution o, =5um® m
PattP (s p(GeV)sin®? 0 s

Vertex detector specifications:
* spatial resolution near the IP: <3 um
* material budget: < 0.15%X ,/layer
* pixel occupancy: <a few %
* radiation tolerance: lonising dose: 100 krad/ year
Non-ionising fluences : <10%'n,./ (cm? year)
* first layer located at a radius: ~1.6 cm

Silicon tracker specifications:

* Ocp 1 < 7 um —> small pitch (50 pum)

* material budget: < 0.65%X ,/layer
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Baseline design

ILD-like design

* VXD: 3 layers double-sided pixels
* Si-tracker: i
FTD — 7 disks (2 disks with pixels and 5 disks with Si strip sensor)
on each side
SIT — 2 inner layers Si strip detectors
SET — 1 outer layer Si strip detector

ETD — 1 end-cap Si strip on each side
September 12, 2014



Baseline design: forward region
L*=1.5m

An alternative layout is being investigated for the constraints induced
by the QD0 at 1.5m
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* Remove FTD6 and FTD7 will ruin the IP resolution for tracks <10 degrees
(and if smaller TPC, worse momentum resolution)
* One more pixel measurement can save the IP resolution

e further optimization studies needed based on IP design and background
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Simulation and performance optimization studies

 LDT simulation setup
LDT: Fast simulation using Kalman filter

— A helix track model inclusion multiple scattering
— Simplified simulation + track reconstruction

— “Validated” by CLIC CDR * |f single point resolution

e Studies worse by 50%, ip.resol
worse by 30%/10% for
high/low pt tracks
* If material budget
— Dependence on arrangement of Iayers increase by a factor of 2,
e R_beampipe=10 mm ip.resol worse by 20% for
e L*~=15m 90 degrees tracks
* Reduce the radius of
beam pipe will gain a little

— Dependence on material budget

— Dependence on single point resolution
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Forward impact parameter resolution and momentum resolution can
be cured by 1 additional pixel measurement
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with both 4 and 5. only slightly better than 4

constrained by IP
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Sensor options

Identification of b/c quarks and t lepton requires:

Spatial resolution .
—  3um

Material Budget .
—  0.15% X0/Layer \

Inner-most Layer Radius .
— ~l.6cm

Occupancy .
— Lessthan afew %

Radiation tolerance .

— 1KGy&10''n,,/cm? per year

Pixel Pitch

— 20um
Sensor thinning

— 50um thick
Power consumption

— Less than 50 mW/cm? required by air cooling
Time window

— 20us (depends on beam induced background)
Radiation tolerance

— 1KGy&10''n,,/cm? per year

* |LC/CLIC Vertex The same physics, but pulsed colliding mode

 DEPFET for BELLEII
 ALPIDE for ALICE upgrade

September 12, 2014
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DEPFET for BELLEII

Possible application for CEPC inner most layer:

- 0.15% material budget (0.21% currently)
- 2.5W/ladder in sensitive area

- Time window of 50us

ALPIDE for ALICE Upgrade

e HR-CMOS Sensor with a novel readout structure

In-pixel discriminator and digital memory based on a current comparator,
In-column address encoder,
End-of-column read-out,

22um*22um,

<50mW/cm? expected,

Capable of readout every ~4ps.

 The same principle can be applied to SOI

Mature process available, 0.2um KEK-SOI process,

Full CMOS circuit,
Fully depleted HR substrate,
Thinning to 50um demonstrated .~

l
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(b) In-pixel front-end circuitry of ALPIDE (simplified)
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Critical R&D: pixel

Cooling

— Air cooling 50mW/cm2 with acceptable vibration due to air
flow.

— CO, cooling at the end of ladder.

Light weight mechanics

— 0.05%(0.1%) material budget without(with) cabling.
Sensor thinning to 50um

Novel readout structure and low power circuit

— In-pixel discriminator

— In-matrix sparsification

Systematic study on radiation tolerance

— Mild compared to LHC but careful characterization needed.

September 12, 2014
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Critical R&D: Silicon tracker

* Silicon microstrip sensor

— Slim edge or edgeless (< 100 um) to avoid material excess from
overlapping sensors = mechanical/laser/etching ?

— Cost-effective sensors with large wafer size (6”” or even 8”);
possible different sensor designs for barrel and disks

— HV-CMOS applicable? (being pursued by ATLAS)

* Front-end electronics
— Low noise, low power consumption
— Deep sub-micron CMOS technology, preferably in 65 nm
— Unified application with other detector readout - to be pursued

* Powering and cooling

— DC-DC powering to reduce cable material - more results from
the detector upgrades of the LHC experiments

— Air-flow cooling sufficient? Or more aggressive CO2 cooling or
even silicon micro-channel cooling?
September 12, 2014
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Summary

Lots of effort towards pre-CDR

ILD-like vertex and Si-tracker layout, with some
changes on forward region

simulation

R&D on HR-CPS and SOl technology possible to
start

Detailed costing methodology needed
Very tight schedule for pre-CDR documentation

Thank you!



Backup
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Study change 1n efficiency of b & ¢ tagging in Z0-like flavor composition

IR 254 L A Fedg AR F R

b and ¢ Tagging vs. Extrapolation Resolution

R Hawking, LC-PHSM-2000-021

Geometry oyp (LM)

ILC S5@10/ p, b purity=0.9 £,=0.75

“LHC” 12970/ p, b purity=0.9 £,=0.25

R, 1.2cm 4®7/ p, ¢ purity=0.7 £,=0.49
2.1cm 5.5@14/ p, €,=0.40

Total efficiency = ¢ N, with N = number of jets to be tagged
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Experiment BELLE-II ILC STAR ILC CLIC_ILC
Technology |DEPFET DEPFET MAPS MAPS Hybrid
Active Area [~220 ~3300 ~1500 ~3300 ~10000
(cm?)
Spatial 10um 3~5um 6um 3um 3um
Resolution
Power 360W ~20W* ~350W ~20W* ~470W
R.O. Speed 20us 25-100us 200us 10us 10ns
Duty Cycle 1 1/200 1 1/200 156ns/20ms
Material 0.2% 0.15% 0.37% 0.15% 0.2%
Budget
(Xo/Layer)

September 12, 2014
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Upgrade of the ALICE Inner Tracking System

Based on high resistivity epi layer MAPS

3 Inner Barrel layers (IB)

4 Outer Barrel layers (OB)

Radial coverage: 21-400 mm

~ 10 m?

In|<1.22 over 90% of the luminous region
0.3% X0/layer (1B)

0.8 % X0/layer (OB)

Radiation level (L0): 700 krad/10% n., cm

Expt-System o, O, TID Fluence Top
STAR-PXL < 200us ~5um 150kRad 3-10*°n,/cm? 30°C
ALICE-ITS 10~30us  ~5um 700kRad 10%3n,./cm? 30°C

September 12, 2014
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CLIC Vertex e

2/

*  Much shorter time window(10ns) o <« D |
. . . 5 3ME

— imposes higher power consumption — Confiuration dat .

. . ape Cresr E 'Eal?ng{n?Musgirﬁasi - E

— and thus higher cooling capability. : ;

il

— 20us for ILC (possibly longer for CEPC). | 2t iieiiiaiie

* Hybrid Pixel with 65nm-based readout chip
— In-pixel measurement and fine time stamping (10ns)
— 470W in total(50mW/cm?) with power pulsing applied(reduction to 1/20).
* Air cooling (50mW/cm?)
— 150-190g/s mass flow for CDR layout,
— 20g/s mass flow for the improved layout named “Spiral Discs”.
— Also 20g/s mass flow for ILC layout but with a smaller heat load(~10mW/cm?).

Bottom plxel

Power Pulsing is the key ingredient leading to a low power solution!

September 12, 2014 20



DEPFET for BELLEI

18W one ladder 360W full PXD

8 DCDs: 1.5W each 12 switchers: 1W total Active area: 1W total 8 DHPs: 0.5W each

—
°c 7.991 9.415 10.838 12.262 13.686
8.703 10.127 11.55 12.974 14.409

16.5cm?/Ladder

PXD fully armored

— All-silicon module

- Blue: CO, capillaries
TN Yellow: Air channels

Short
Conti

time window of 20us
nuous readout:

— 16W cooled by CO,
— 2W cooled by air flow

Possible application for CEPC

inner

most layer:

— 0.15% material budget (0.21%
currently)

- 2

.5W/ladder in sensitive area

— Time window of 50us

Pix

el Array:
500(column)*1050(row)
25um*25um within |z|<lcm
50um*25um within 1<|z|<2cm
100um*25um within |z|>2cm

Low Material Budget Cooling

— Massive structures outside the acceptance to cool down
the readout chips(CO,)

— The:eentreo1 2)2Bdder relys on cold dir
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thinner, edgeless or 3D active edge, lower voltage deep submicro CMOS
biased strip sensors technology (130 nm — 65 nm)
September 12, 2014
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Mechanics and integration

RDO
buffers/
drivers

Aluminum conductor Ladder Flex Cable
+ 20 cm >

0.37 % XO per layer 0.21 % XO per layer 0.3% XO0/layer

50 pm sensors ZIF connector to servicing board

Low mass flex cable ~ |

12em

PLUME:0.2-0.3% X0 DEPFET with self-supporting handle wafer 0.11% X0
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