

Silicon-Tunsgten ECAL R&D

Víncent Boudry

for the LLR ECAL group

École polytechnique, Palaiseau

CEPC meeting Jiao Tong University, Shanghai 12 / 09 / 2014

Title:IN2P3Filaire-Q_Sig Creator:Adobe Illustrato CreationDate:1/28/2009 LanguageLevel:2

Si-W ECAL for ILD

Work of many groups: LLR (Palaiseau), LAL (Orsay), LPNHE (Paris), LPC (Clermont), LPSC (Grenoble), Tokyo, Kyushu

Adaptation for CEPC

"Small ILD" model: simulation & mechanical model

1st Cooling Studies

an ECAL optiminsed for the PFA

Requiments:

- Measure the photons
- Identify the electrons deposits (to be removed)
 ↔ tracks
- Follow the tracks
 - to a eventual hadronic interaction
- measure the non-charged hadrons (1/3 interact in the ECAL)

IN HIGH E JETS

- \Rightarrow Excellent Imaging capacities, separation
 - Compact showers: Si-W ECAL
- \Rightarrow Good resolution for γ , h^o

Particle Flow Algorithms : • Jets = 65% charged + 25% y + 10% h⁰ Tracks ECAL CALO's

HCAL

• TPC $\delta p/p \sim 5 \cdot 10^{-5}$; VTX $\sigma_{x,y,z} \sim 10 \ \mu m$

H. Videau and J. C. Brient, "Calorimetry optimised for jets," in Proc. 10th International Conference on Calorimetry in High Energy Physics (CALOR 2002), Pasadena, California. March, 2002.

Vincent.Boudry@in2p3.fr

Imaging Calorimetry

Imaging Calorimeters 1000× current granularity

- wrt LHC: data rate >> but embedded electronics
- Pattern recognition

Needed R&D:

- Dimensioning, Mechanics (uniformity), Sensors, Electronics, VFE, Power Consumption, Thermal dissipation & uniformity
- Iterative construction & test of Prototypes
- Detector & Integration
 - Optimisation : Physics vs cost, services (PP, cooling)

Dedicated SW tools for PFA:

Difficulty : perf in JER = HW \otimes SW

Vincent.Boudry@in2p3.fr

SiW ECAL: Physics & Technological prototype

Physics prototype: 2005-2011

PFA proof of concept with comparison to MC (PandoraPFA etc.)

Electronics outside

- 1cm x 1cm pixels
- full 30 layers

(used for PAMELA sat.)

Technological prototype

Embedded electronics

- SKIROC2 analog/digital ASICs
 - auto-triggered, zero suppr., PP
- pixels 5×5mm²

Assess the feasibility

Establish procedures and develop test benches for mass production

Vincent.Boudry@in2p3.fr

The SiW-ECAL of ILD

Vincent.Boudry@in2p3.fr

ECAL structure

Barrel: 5 octagonal wheels

- R_{min} = 1808 mm; R_{max} = 2020
- Width = 940mm
- End-caps: 4 quarters

g

Vincent.F

 $- \varnothing_{min} = 800 \text{ mm}$

Carbone / Tunsgten structure

- filled with Si or scintillators (option MAPS/DECAL)
- Extensive mechanical simulation & tests

N ECAL | CEPC 4th meeting, Shanghai | 12/09/2014

ECAL : Composite Structure (barrel)

- Carbon Fiber + Tunsgten
 - Prod : dec 2011 (5 yrs of R&D)
 - 600kg, 15 layers
- 15 alveoli produced, 1 faulty
- 1 equipped with Fiber Bragg-Gratted (FBG)
 - \Rightarrow Comparison calculation and measurement
- Assembling mould
 - Cooking in autoclave
- Metrology
 - Minor on-side deformation

Vérification des paramètres du modèle en comparant la flèche FBG3 mesurée et simulée

Optical fiber Thermal sensor

ECAL : FE Boards

Tests of (early) FEV7 CIP et COB PCB (now FEV11 in prodcution)

"Adaptator" board

BGA

- Interface to cooling
- Buffer for power pulsing
 - with super-capacitors (super-C)
- Connexions tested in strong B field \rightarrow DESY (02/2013): no effect

SLAB Assembly: full chain

R&D for "mass production" and QA

- Quality tests & preparation of large production
- Modularity \rightarrow ASU & SLABs
 - Choice of square wafers
 (≠ from hex: SiD, CMS HGCAL)

Numbers (R_{ECAL} = 1,8 m, $|Z_{Endcaps}|$ =2,35m) (likely to be reduced by 30–40%)

- Barrel modules: 40 (as of today all identical)
- Endcap Modules: 24 (3 types)
- Slabs = 6000 (B) + 3600 (EC) = 9600
 - many ≠ lengths
- ASUs = ~75,000
 - Wafers ~ 300,000 (2500 m²)
 - VFE chips ~ 1,200,000
 - Channels: 77Mch

U layout of a long slab

RnD on Si-W ECAL | CEPC 4th meeting, Shanghai | 12/09/2014

Vincent.Boudry@in2p3.fr

Wafers:

Key elements of detector

- Basic unit for the size of the detector
- (Most expensive part too)

Guard Rings

- Alternative designs
 - segmented, "edgeless"
- Complete characterisation of sensors
 ⇒ link to & test variety of producers
- Work in CALIIMAX-HEP French ANR in relation with Kyushu/Hamamatsu
- Test of Silicon sensors
 - Test different HPK designs: C-V, I-V.
 - Laser tests: xtalk via GR.

From physics prototype test beams

- "Square events"
 - cross talk between guard rings and pixels

- Plans:
 - Irradiation tests (γ,n)
 - Validation of GR design in HE electron beam.

RnD on Si-W ECAL | CEPC 4th metric. Boudry@in2p3.fr 2G DAQ for the CALICE beam tests | LCWS'11 | Grenade, 29/09/2011

Si-W ECAL for the CEPC

Same mechanical structure as ILD but...

- Rates of machine $\neq \Rightarrow$ worst case: ~continuous
- no power-pulsing \Rightarrow VFE power \checkmark
 - 27 μ W/ch \rightarrow ~**5mW/ch** (for 25 ns BX)
 - $-\mu$ -power pulsing for slower modes ?

Adaptations:

- Reduced number of layers
 - $30 \rightarrow 20$?
- Less electronics channels
 - $0.5 \times 0.5 \text{ cm}^2 \rightarrow 1 \times 1 \text{ cm}^2$?
- Radiations ? \rightarrow leakage current \checkmark
 - cooling at -20°C for CMS-HGCAL ?
- Performances to be evaluated
 - Occupancy!!! \rightarrow power consumption
 - (Simulation on Small ILD version).

Vincent.Boudry@in2p3.fr

Exemple of design with cooling

Passive cooling

- too much gradient in Si...

Active cooling

- Evaporative CO₂ cooling in thin pipes embbeded in Copper exchange plate
 - for CMS-HGCAL : 33mW/cm²
 - down to 0.6×0.6cm² OK
 - (safety margin of 2)

\rightarrow To be modelled for Mokka simulation

Thermic Studies & Cooling for ILD

RnD on Si-W ECAL | CEPC 4th meeting, shanghar przywizy 14

Simulation studies

Shown @ LCWS'13 (work by Trong Hieu Tran)

https://agenda.linearcollider.org/getFile.py/access?contribId=67&sessionId=35&resId=0&materialId=slides&confId=6000

- Evaluation of the JER vs R_{INNER} ($\leftrightarrow R_{TPC}$, @ fixed R/L ratio).
- Using PandoraPFAnew v0.12 and full calibration procedure
 - μ , γ , K_{L}^{0} samples \Rightarrow ECAL/HCAL intercalib + E2H/H2H + angular corr.
- ILD_o1/2_v05(SEcal04, AHCAL/SDHCAL)
 - SiW ECAL: 5×5 mm², AHCAL: 3×3 cm², sDHCAL: 1×1 cm²

Results

− \leq 10% for RI_{NNER}=1800 \rightarrow 1400mm

Vincent.Boudry@in2p3.fr

Variation of N_{Layers}

PhD student in co-tutelle LLR / IHEP on ILC / CEPC ECAL

Shown @ 6th ILD Optim meeting (16/07/2014) [Internship work of **Dan Yu (LLR)**] https://agenda.linearcollider.org/getFile.py/access?contribId=2&resId=0&materialId=slides&confld=6435

- Variation of ECAL's N_{Layers} for R=1450mm, HZ_{Barrel}=1848mm on ILD_o2_v05
- Exact Same procedure as previous study
 - Non-Linearity $\leq 1\%$
- For $|\cos\theta| \le 0.7$

Results

– JER + ≤6% @45 GeV

Simulation to be improved in endcaps

number of Si layers	W layers (1st section)	${ m Thickness}\ { m (mm)}$	W layers (2nd section)	$\begin{array}{c} {\rm Thickness} \\ {\rm (mm)} \end{array}$
20	13	3.15	6	6.3
26	17	2.4	8	4.8
30	20	2.1	9	4.2

Vincent.Boudry@in2p3.fr

Realistic parameters for small ILD

From preliminary mechanical model \Rightarrow in simulation & cost

- Reduced radius R_{INNER}=1400mm.
- Base unit = Wafer size
 - Largers Wafers: $6^{"} \rightarrow 8^{"}$ (OK from HPK, LFoundry); smaller wafers (4") in 2nd part ?
 - Wafer side: $\sim 90 \rightarrow 126 \text{ mm}$; Alveola $\sim 200 \text{ mm} \rightarrow 253,8 \text{ mm}$;

Barrel: 5 modules of 3 alveola

- L_{Barrel} = 3829mm (Z_{endcap} = 3929mm).

Endcaps: Quadrants of 2 modules of 2 and 3 alveola

- with R(ECAL Ring) = 40cm + Integer number of Wafers + ¹/₂ Wafers
 - \Rightarrow R_{Endcap} = 1676mm
- N_{layers} = 22 = **14 + 8** (single and double W thickness)
- Wafer thickness 500 $\rightarrow \textbf{~725}\mu m$
 - − Improved $\sigma(E\gamma) \propto 5\sqrt{t} \Rightarrow \sim recovery of N_{layers}$ effect. \Rightarrow compensation of N_{Layer} loss.
 - ECAL thickness = 223,85 mm

Vincent.Boudry@in2p3.fr

Mechanical model

Vincent.Boudry@in2p3.fr

Small ILD ECAL Cost

Complete re-evaluation for the ressource survey in July (PRELIMINARY)

- Number of elements
 - Wafers, ASICs, PCB's, SLABs, structures,
 - moulds, processes, test benches
 - transportation boxes
- Man•Years
 - Reception, Tests, Mounting, Installation

Outcome:

– Cost ratio 1.4m/1.8m of 47,5%

Cooling studies (preliminary)

Based on CALICE and CMS-HGCAL schemes

- cooling with di-phasic CO₂ pipes with extra Copper for heat transfert:

- 3 mm of Cu, 2.8mm of W, Silicon Wafers of 725 μ m, pipes of $\emptyset_{int/ext}$ = 1.6/1.8mm
- Working point of CO_2 : 20°C, Chips power of 10mW/ch × 64 = 0.64W

Vincent.Boudry@in2p3.fr

ANSYS thermal simulation

Fully transversally isolated system,

with ASICs a sole heat source, and pipes @ 20°C as heat sink

- purely diffusive model (no convection), at equilibrium,
- ideal heat interfaces, chips packaging, cooling pipes
- 2 side longitudinal modules simulated
- Heat conductivity are "best guess" only:
 - Epoxy ~ 0.795 W/m•K
 - Composite highly anisotropic (high along fibres)
 - PCB are laminated of 3% of Cu (385W/m.K) + 97% of FR4 (0.3W/m.K)
 - ASICs package choosen as 1 W/m.K

First results, to be re-evaluated...

Vincent.Boudry@in2p3.fr

Results (very preliminary)

Over complete module:

- $\Delta T \leq \sim 2^{\circ}C$
- Mostly in ASICs
- PCB, CFRP &
 W harmonize the temp.
- Max temp at the center

 $- \Delta T \sim 0.3^{\circ}C$

Conclusion: the tool and the expertise exists... ... results will arrive.

Vincent.Boudry@in2p3.fr

RnD on Si-W ECAL | CEPC 4th meeting, Shanghai | 12/09/2014

Température

Température 4

Unité: °C Temps: 1 31/07/2014 14:56

Type: Température

20,342 Max 20,305 20,268 20,231 20,194 20,157 20,12

20,083 20.046

20.009 Min

Perspectives

Many years of R&D on ECAL (esp. at LLR) for ILC "easily" adaptable to CEPC case

Work on design modell has started

- benefit from CMS-HGCAL studies
- expertise on cooling and thermal simulation building-up

Most urgent to assess the performances and the needed granularity:

- Bunch structure of the machine will determine the granularity and performance of the ECAL
 - \Rightarrow Occupancy studies mandatory to fine tune the electric comsumption
 - Specific R&D needed on VFE ASICs
- Updated GEANT4/Mokka models needed (support from LLR)
- 1 PhD student (Dan Yu) will work both on ILD and CEPC performances

Extras

Vincent.Boudry@in2p3.fr

Physical prototype

Vincent.Boudry@in2p3.fr RnD on Si-W ECAL | CEPC 4th meeting, Shanghai | 12/09/2014

Current structure of end caps

Vincent.Boudry@in2p3.fr

Assembly 1: Gluing

Toward semi-automatic gluing of 4 wafers on every PCB:

- Constraints on the PCB geometry have been identified:
 - Flatness
 - Parallelism of the edges
 - Uniform height of the ASIC soldered on the board
- 9 sensors has been glued with the robot: used at 2012–13 beam tests

The leakage currents measured before and after the gluing process are similar.

Recent improvements

- Use of specific pumps for dry and clean vacuum
- Careful cleaning of PCB
- New positioning of the glue dots for the external pads, to avoid short-circuits.