CMOS Pixel Sensor for CEPC Vertex Detector

Min FU¹, Peilian LIU², Qinglei XIU², Ke WANG², Liang ZHANG³,

Ying ZHANG², <u>Hongbo ZHU²</u>

Ocean University of China
 Institute of High Energy Physics
 Shandong University

"4th International Workshop on Future High Energy Circular Colliders" 12-13 September 2014, Shanghai

Outline

- Introduction
- CMOS Pixel Sensor (CPS)
- CPS for the CEPC vertex detector
- Summary and outlook

Introduction

 Impact parameter resolution required for the identification of heavy quarks and τ-leptons (essential for CEPC physics):

$$\sigma_{
m IP} = 5 \oplus 10/p \cdot \sin^{3/2} heta \,\, \mu{
m m}$$

- Translating to requirements on the CEPC vertex detector:
 - Single point resolution $\sigma_{SP} \sim 3 \ \mu m \rightarrow high granularity$
 - Material budget $\leq 0.15\% X_0$ per layer
 - Sensor+ASIC thickness ~ 50 μm → monolithic sensors
 - Air cooling → low power consumption (extremely challenging without power-pulsing)
 - Radiation tolerance ~100 kRad/y & 10¹¹n_{eq}/cm²
 - Low detector occupancy ~0.5% → fast readout

CMOS Pixel Sensor

- Front-end electronics and sensor (utilising the epitaxial-layer) integrated on the same silicon bulk, featuring:
 - High granularity → high spatial resolution
 - Sensor thinned down to 50 μ m \rightarrow low material budget
 - Standard CMOS fabrication technology → cost effective
 - Signal processing on-chip \rightarrow relaxing down-stream data processing
 - Radiation tolerance (moderate) → usable for electron machines
- Example CPS sensors designed by IPHC
 - Mimosa26 (EUDET beam telescope), Mimosa28 (STAR PXL)
 - MISTRAL/ASTRAL (ALICE ITS Upgrade, CBM-MVD)
 - Adaption to the ILD VTX

CPS for CEPC

- CEPC CPS project supported by the State Key Laboratory of Particle Detection and Electronics
 - "Semiconductor detectors for CPEC", 2014-2015, 400k CNY
- Project kick-off meeting on 21 July 2014; defined the following tasks for this one-year project:
 - To form a strong development team with sufficient expertise and identify the most critical R&D items
 - To compete the prototype design with the selected CMOS process and prepare for MPW submission (request for additional funding)
 - MPW submission and preparation for sensor characterisation, including DAQ development, beam telescope construction etc.
 - To define the roadmap for future development

Building up the Team

Collaborative team members with great enthusiasm

	Affiliation	Responsibilities	
Hongbo Zhu	IHEP	Project leader & beam telescope	
Min Fu	OUC	TCAD simulation	
Ying Zhang	IHEP	Front-end electronics	PhDs from IPHC
Liang Zhang	SDU	Front-end electronics)
Ke Wang	IHEP	Readout electronics	
Pelian Liu	IHEP	DAQ and detector simulation	
Qinglei Xiu	IHEP	DAQ and background simulation	

Yet more electronics/detector experts and students (!) are welcome to join the adventure.

TowerJazz 0.18 CIS and XFAB XO035 under consideration

CMOS Processes

Basic requirements: EPI-layer (≥ 10 µm, high resistivity), Deep N/P-well (to implemented in-pixel circuit)

	Feature size (µm)	EPI thickness	EPI resistivity	MPW avalability	Cost
TowerJazz	0.18 CIS	5-18 µm	1 kΩ · cm	TBC	600k CNY
	0.18 BCD	TBC	10 Ω · cm	YES	
	XH035	P-5/15 µm	8Ω·cm	YES	
XFAB	XO035	P-14 μm	0.55 - 2 kΩ · cm	YES	TBC
	XH018	P-10 μm	$15 \Omega \cdot cm$	YES	125k CNY/10 mm
SMIC	0.13/0.18 CIS	P-7 μm	0.55 - 2 kΩ · cm	UNLIKELY	
GF	0.18 BCDlite	7 µm	1Ω·cm	YES	30k CNY/9 mm
CSMC	0.25 BCD	7 µm	TBC	TBC	
TSMC	CMOS	7-8 µm	8.5 -11.5 Ω · cm	UNLIKELY	
	CIS	TBC	TBC	UNLIKELY	

Institute of High Energy Physics

CMOS Pixel Sensor for CEPC

Adopted for ALICE ITS Upgrade

TowerJazz® CMOS Process

- Feature size: 0.18 μm
- Thick epitaxial layer: 5-18 μ m, 1 < ρ < 6 k Ω · cm
- Six metal layers
- Deep P-well option (P-layer underneath N-well protecting from parasitic charge collection) allows usage of PMOS transistors
- ► Stitching option → to make large area detector

Ideal for the fabrication of CPS, but rather expensive!

Power Consumption

 Air-cooling desirable for the CECP vertex detector to minimise material budget but power-pulsing not optional → imposing stringent requirement on power consumption: 50 mW/cm²

Table 2.2: Chip design options.								
Architecture (discriminator, read-out)	Pitch $(r\phi \times z) ~(\mu m^2)$	Integration time (µs)	Power consumption $(mW cm^{-2})$					
MISTRAL (end-of-column, rolling-shutter)	22 imes 33.3	30	200					
ASTRAL (in-pixel, rolling-shutter)	$24 imes 31\ 36 imes 31$	20	85 60					
CHERWELL (in-strixel ^a , rolling-shutter)	20 imes 20	30	90					
ALPIDE (in-pixel, in-matrix sparsification)	28 imes 28	4	< 50					
^a A strixel is a 128-pixel column over which the electronics are distributed.								

ALICE ITS Upgrade TDR

Can we learn more from the fast developing CMOS image sensor readout designs?

Readout Architecture

- The classical rolling shutter with end-of-column discriminators yields a long integration time (~ 200 µs) and high power consumption (~ 200 mW/cm²). Moving discriminators to in-pixel improves the performance. → optional for CEPC
- New readout architectures, e.g. in-matrix sparsification, make possible shorter integration time and lower power dissipation.

Radiation Background

 Estimated the hit density and detector occupancy of the CEPC vertex detector → to provide reference for sensor design

Preparation for Sensor Tests

- Semiconductor Lab@IHEP maintains a class-10000 clean room (150 m²) equipped with probe station, wire-bonder, etc.
 - I-V/C-V curves, laser/radioactive source responses
- High resolution beam telescope in preparation
 - Similar design to the EUDET telescope but with larger pixel sensors (MIMOSA28) and improved DAQ

Summary and Outlook

- CMOS pixel sensor, a promising candidate for the CEPC vertex detector, relies on an appropriate CMOS process and may achieve fast readout with low power consumption.
- We have formed a team, aiming to address a few critical R&D items for the application of CPS to CEPC. Design efforts have started but experts/students are always welcome to join us.
- We have defined the expected achievements of the one-year project and shall request for additional funding for MPW submission and follow-up sensor tests.

ultimate design goal:

- Spacial resolution: $\leq 3 \ \mu m$
- Detection efficiency: \geq 99% (fake rate <10⁻⁵)
- Readout time: < 20 μs
- Power consumption: $< 50 \text{ mW/cm}^2$
- Radiation tolerance: close to ILC requirement