ZAND W PHYSICS AT CEPC

Haijun Yang, Hengne Li, Qiang Li, Jun Guo, Manqi Ruan, Yusheng Wu, <u>Zhijun Liang</u>

Introduction

- CEPC have very good potential in electroweak precision physics.
- Precision measurement is important
 - Precision electroweak measurement constrain new physics beyond the standard model.
 - Eg: Radiative corrections of the W or Z boson is sensitive to new physics

- This talk summarize the existing precision measurement
- Estimate the expected precision in CEPC

W mass measurement

- Current PDG precision : 80.385±0.015 GeV
 - Possible goal for CEPC : ~5 MeV
- Two methods: Threshold scan, direct measure
 - 1.Threshold scans of W+W- cross section (\sqrt{s} =160GeV)
 - Disadvantage:
 - Higher cost
 - Require dedicated runs 100fb⁻¹ on WW threshold (~160GeV)
 - Low statistics: low cross section below threshold
 - high requirement on beam momentum uncertainty
 - LEP (~50ppm)
 - Require CEPC to be less than 10ppm
 - Advantage:
 - Very robust method, can achieve high precision.

	LEP	CEPC (100fb ⁻¹)
Statistical error	200 MeV	2 MeV
Syst error	70 MeV	2~4 MeV

σ_{ww} (pb)

W mass measurement

- Method 2: direct measurement ($\sqrt{s}=250GeV$)
 - Decays model : WW-> lvqq , WW->lvlv
 - Advantage :
 - No additional cost :measured in ZH runs (sqrt(s)=250GeV)
 - Higher statistics: 10 times larger than WW threshold region
 - Lower requirement on beam energy uncertainty.
 - Disadvantage :
 - Larger uncertainty due to initial/final state photon radiation modeling

	LEP	CEPC (100fb ⁻¹)	CEPC (100fb ⁻¹)
	lvqq	lvqq	lvlv
Statistical error	30 MeV	1.5 MeV	~3MeV
Beam energy	17 MeV	0.5 MeV	0.5MeV
Detector resolution	14MeV	3~4 MeV	2~4 MeV
Hadronisation	19MeV	2~3 MeV	-
QED	20MeV	1MeV	2~3 MeV

Summary on W mass

- No strong motivation to have dedicated WW threshold scan $(\sqrt{s}=160 \text{GeV runs})$ in CEPC.
- Direct W mass measurement in ZH runs (√s=250GeV) have potential to reach less than 5 MeV level precision.
 - More detailed estimation need to be done in next month with MC simulation

m_z measurement

- LEP measurement : 91.1876±0.0021 GeV
 - Stat uncertainty : 1MeV
 - Syst uncertainty: ~1.5 MeV
 - beam energy uncertainty
 - lepton momentum scale uncertainty
- CEPC possible goal: 0.5~1 MeV
 - Stat uncertainty: 0.2 MeV , syst uncertainty: 0.5~1MeV
- Z mass threshold scan is needed to achieve high precision.
 - Precision in direct measurement in ZH runs is much lower
 - Z threshold scan is very important for energy scale calibration

Proposal for Z Mass scan

The statistics in Off-peak runs was the bottleneck
Propose 10 fb-1 integrated luminosity for off-peak runs in CEPC
7 mass scan runs

Sqrt(s) GeV	LEP lumi (fb-1)	Proposed CEPC lumi	
88.2	0.05fb-1	10 fb-1	
89.2	~0.4fb-1	10 fb-1	
90.2	0.05fb-1	10 fb-1	
91.2	~4 fb -1	100~1000fb-1	
92.2	0.05fb-1	10 fb-1	0.2 0.2
93.2	~0.4fb-1	10 fb-1	integrated furninosity of each off-peak run (ro)
94.2	0.05fb-1	10 fb-1	

Weak mixing angle $\sin^2 \theta_{eff}^{lept}$

- LEP/SLD measurement : 0.23153 ± 0.00016
 - 0.1% precision.
 - Stat error in off –peak runs dominated.
- CEPC
 - Stat error : 0.02% ;
 - systematics error : 0.01%
 - The statistics of off-Z peak runs is key issue.
 - Need at least 10 fb⁻¹ for off-peak runs to reach high precision.

9

- Expect 10~15% higher B tagging efficiency than LEP ex
 - In 95% B jet purity working
 - Reduce charm mistag and light jet mistag and hemi corrections systematics
- Stat error (0.04%)
- Syst error (0.07%)
 - Charm mistag (0.05%)
 - Light jet mistag (0.05%)
 - Gluon radiation (g->bb , g->cc) (0.1%)

Branching ratio (R^{mu})

- LEP result: 0.2% total error
 - Stat : 0.15%
 - Syst : 0.1%
- CEPC: 0.05% total error expected
 - Better EM calorimeter is the key
 - Stat: 0.01%
 - Syst: 0.05%

Systematics source	LEP	CEPC
Radiative events (Ζ->μμγ)	0.05%	0.05%
Photon energy scale	0.05%	0.01%
Muon Momentum scale	0.009%	0.003%
Muon Momentum resolution	0.005%	0.003%

Number of neutrino generation (N_v)

- LEP measurement :
 - Indirect measurement (Z line shape method): 2.984+-0.008
 - Direct measurement (neutrino counting method): 2.92+-0.05
 - Stat error (1.7%), Syst error (1.4%)
- CEPC measurement :

$$e^+e^- \rightarrow \nu \bar{\nu} \gamma$$
.

- Stat error (0.1%), Syst error (0.15%)
- expected better granularity in calorimeter can help photon identification
- Should focus on direct measurement
 - Need to consider photon trigger in early stage
 - Photon Trigger performance is key for this measurement

Systematics source	LEP	CEPC
Photon Trigger efficiency	0.5%	0.1%
Photon Identification efficiency	0.5%	0.1%
Calorimeter energy scale	0.5%	<0.05%

- A comparison of LEP and CPEC precision
 - To Do :
 - WW coupling limits
 - W and Z boson width measurement
 - QCD alpha_S measurement

Observable	LEP precision	CEPC precision
Z mass	2 MeV	0.5~1 MeV
W mass	33 MeV	3~5 MeV
A _{FB (b)}	1.7%	0.15%
Sin ² θ _w	0.1%	0.01%
R ^b	~0.3%	0.08%
N _v (direct measurement)	1.7%	0.18%
R ^{mu}	0.2%	0.05%
R ^{tau}	0.2%	0.05%

Backward-forward asymmetry measured from b jet

- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Stat error: ~1.2% (4 experiments)
 - Systematics: ~1.4% (combination of three methods)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Branching rate of b/c decay into lepton (1.5%)
 - B-tag and jet charge (1.1%)
 - Lepton pT and lepton Identification (0.9%)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - B-tag efficiency (0.4%)
 - charge correlations due to B tag/ jet charge (0.1%)
 - Sample statistics in light/heavy flavor jet sample (0.74%)
 - Method 3: D meson method (>8%, less important method)
- CEPC
 - Should focus on inclusive b jet measurement
 - Expected Stat error (0.1%) (>100 times of LEP stat)
 - Expected Systematics (0.12%) :
 - B-tag efficiency (0.1%)
 - charge correlations due to B tag/ jet charge (0.05%)

Backup: Branching ratio (R^e)

LEP result :

- Syst error (0.17%)
 - t channel subtraction (0.11%)
 - Electron and momentum scale (0.06%)
 - Tau background (0.08%)

• CEPC

- Dominated by t channel background and tau background
- No much room to improve on R^e

Branching ratio (Rtau)

- LEP result: ~0.2% total error
 - Stat : 0.15%
 - Syst : 0.17%
 - Tau selection efficiency : 0.08%
 - Consistency of analysis cuts in different dataset: 0.11%
 - Background (Bhabha events ...): 0.08%
 - BG Modelling is not good
- CEPC result:
 - Stat (0.01%)
 - Syst (0.04%)
 - Expect better BG MC modelling , no consistency issue
 - Tau selection efficiency : 0.03%
 - Background (Bhabha events ...): 0.03%

Number of neutrino generation (N_v^{16})

- LEP measurement :
 - Indirect measurement (Z line shape method): 2.984+-0.008
 - Measured in Z peak region
 - No much room to improve
 - Direct measurement (neutrino counting method): 2.92+-0.05
 - Measured in 180~209 GeV runs
 - Using single photon + missing energy events
 - Stat error (1.7%)
 - Systematics (1.4%)
 - Photon Trigger efficiency (0.5%)
 - Photon Identification efficiency (0.5%)
 - Calorimeter energy scale (0.5%)
- CEPC

$$e^+e^- \rightarrow \nu \bar{\nu} \gamma$$
.

- focus on direct measurement
 - Need to consider Photon trigger in early stage
 - Trigger performance is key for this measurement
- Measured in ZH runs (cms~ 250GeV)
 - Stat error (0.1%)
 - Syst error (0.15%)
 - expected better granularity in calorimeter can help photon identification
 - Photon Trigger efficiency (0.1%)
 - Photon Identification efficiency (0.1%)
 - Calorimeter energy scale (<0.05%)