

Hadron Form Factors at BESIII (focused on Baryon)

YADI WANG (HELMHOLTZ-INSTITUT MAINZ)

ON BEHALF OF BESIII

PHIPSI15, SEP. 23-26, 2015 @ USTC, HEFEI (CHINA)

Hadron Form Factors

All hadronic structure and strong interactions in form factors but subject to QED corrections. Hadronic vector current: (2s+1) form factors. For baryons with $\frac{1}{2}$ spin, two electromagnetic FFs.

>Fundamental properties of hadrons

- >Contain information on charge, magnetization distribution
- >Crucial testing ground for models of hadron internal structure
- Necessary input for experiments probing hadronic structure, or trying to understand modification of hadronic structure in hadronic medium

Driving renewed activity on theory side:

- >Models trying to explain FFs of Nucleons
- >Trying to explain data at both low and high q^2
- Progress on QCD based calculations

PHIPSI15

Outline

□BESIII detector at BEPC;

□Proton FFs;

□Neutron FFs;

 $\Box \Lambda FFs;$

 $\Box \Lambda_{\rm C}$ FFs;

Other hyperons FFs;

Summary.

23/09/2015

PHIPSI15

23/09/2015

Baryon EM FFs at BESIII

Direct annihilation

$$\int_{e^+} \frac{\gamma^*(q)}{0000} \frac{B}{B}$$

$$\sigma_{B\bar{B}}^{Born}(q^2) = \frac{4\pi\alpha^2\beta C}{3q^2} \left[|G_M(q^2)|^2 + \frac{1}{2\tau}|G_E(q^2)| \right]$$
Effective form factor $\sigma \propto G(q^2)$

$$|G(q^2)| = \sqrt{rac{\sigma_{B\bar{B}}^{Born}(q^2)}{(1+rac{1}{2 au})(rac{4\pilpha^2eta C}{3q^2})}}$$

Separation of $|G_E|$ and $|G_M|$ through angular analysis:

$$\begin{aligned} \frac{d\sigma_{B\bar{B}}^{Born}}{d\Omega_{CM}} &= \frac{\alpha^2 \beta C}{4q^2} \left[(1 + \cos^2 \theta_B^{CM}) |G_M|^2 + \frac{1}{\tau} |G_E|^2 \sin^2 \theta_B^{CM} \right] \\ \tau &= \frac{q^2}{4M_B^2}, \beta = \sqrt{1 - 1/\tau}, \end{aligned}$$

PHIPSI15

Proton Form Factors with data 2012

Analysis based on 157 pb⁻¹ collected at 12 scan points between 2.22 – 3.71 GeV in 2011 and 2012

Analysis features:

- $\circ p$ and \overline{p} from vertex, in time, back to back, $E_{p,p} = E_{CM}/2$
- Efficiencies 60% (2.23 GeV) ... 3% (~4 GeV)
- Radiative corrections from ConExc (NLO in ISR)
- Normalization to $e^+e^- \rightarrow e^+e^-$, $e^+e^- \rightarrow \gamma\gamma$ (Babayaga 3.5)

$$\sigma_{\text{Born}} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{L \cdot \varepsilon \cdot (1 + \delta)} \quad |\mathsf{G}| = \sqrt{\frac{\sigma_{born}}{(1 + \frac{1}{2\tau})(\frac{4\pi\alpha^2\beta C}{3E_{CM}^2})}}$$
$$N_{\text{obs}} : \text{observed signal events}$$
$$L : \text{integrated luminosity}$$
$$N_{\text{bkg}} : \text{estimated background (from MC)}$$

- ε : detection efficiency (from MC)
- 1 + δ : radiative factor (from MC)

- Effective FF consistent with Babar.
- Overall uncertainty improvement by 30%.
- No steps observed in cross section.

Angular analysis to extract the em FFs:

$$\geq \frac{d\sigma}{d\Omega}(q^2) = \frac{\alpha^2 \beta}{4s} |G_M(s)|^2 \left[\left(1 + \cos^2 \theta_p \right) + \frac{R_{em}^2}{\tau} \frac{1}{\tau} \sin^2 \theta_p \right]$$

$$\sim R_{em} = |G_E(q^2)| / |G_M(q^2)|$$

 \triangleright θ : polar angle of proton at the c.m.system

Fit function:

$$\geq \frac{dN}{d\cos\theta_p} = N_{norm} \left[\left(1 + \cos^2\theta_p \right) + R_{em}^2 \frac{1}{\tau} \sin^2\theta_p \right]$$

$$\geq N_{norm} = \frac{2\pi\alpha^2\beta L}{4s} \left[1.94 + 5.04 \frac{m_p^2}{s} R^2 \right] G_M(s)^2 \text{ is the overall normalization}$$

• R_{em} consistent with BaBar and R=1.

• $|G_M|$ extracted for first time!

fitting method and method of moments

$$\begin{aligned} |\cos^2\theta_p\rangle &= \frac{1}{N_{\text{norm}}} \int \frac{2\pi\alpha^2\beta C}{4s} \cos^2\theta_p [(1+\cos^2\theta_p)|G_M|^2] \\ &+ \frac{4m_p^2}{s} (1-\cos^2\theta_p)|R^2|G_M|^2] d\cos\theta_p. \end{aligned}$$

\sqrt{s} (MeV)	$ G_E/G_M $	$ G_M $ (×10 ⁻²)	
		Fit on $\cos \theta_p$	
2232.4	$0.87 \pm 0.24 \pm 0.05$	$18.42 \pm 5.09 \pm 0.98$	
2400.0	$0.91 \pm 0.38 \pm 0.12$	$11.30 \pm 4.73 \pm 1.53$	
(3050.0, 3080.0)	$0.95 \pm 0.45 \pm 0.21$	$3.61 \pm 1.71 \pm 0.82$	
		Method of moments	
2232.4	0.83 ± 0.24	18.60 ± 5.38	
2400.0	0.85 ± 0.37	11.52 ± 5.01	
(3050.0, 3080.0)	0.88 ± 0.46	3.34 ± 1.72	

Prospects for $e^+e^- \rightarrow p\bar{p}$

- ✓ Expected statistical accuracies based on $R_{em} = |G_E|/|G_M| = 1$ between 9% and 35% (similar to space-like region for the same q²-region)
- ✓ Expected accuracies for |G_M| between 3% to 9%, 9% to 35% for |G_E|

E_{cm}	L_{online}	201	5 data
(GeV)	(pb-1)		
2.0000	9.306	123	XS, Nucleon FFs
2.0500	3.01784	42	XS
2.1000	11.34794	104	XS, Nucleon FFs
2.1500	2.775088	28	XS
2.1750	10.05633	102	XS
2.2000	13.00509	114	XS, Nucleon FFs
2.2324	11.24757	111	XS, Nucleon FFs
2.3094	20.481	137.5	XS, Nucleon FFs
2.3864	22.05922	89	XS, Nucleon FFs
2.3960	64.84102	222.5	XS, Nucleon FFs
2.5000	1.04406	5	XS
2.6444	32.530	115	XS, Nucleon FFs
2.6464	33.730	112	XS, Nucleon FFs
2.7000	0.987445	4	XS
2.8000	0.996496	4	XS
2.9000	102.096	214	XS, Nucleon FFs
2.9500	15.696	25	XS
2.9810	15.391	22	XS
3.0000	15.269	21	XS
3.0200	16.605	22	XS
3.0800	123.024	194	XS, Nucleon FFs

Prospects of $e^+e^- \rightarrow p\bar{p}\gamma_{ISR}$

- Continuous q²-range available: $m_{th}^2 < q^2 < s$
- Full angular distribution in hadronic center-of-mass
- Detection efficiency independent of q² and hadronic angular distribution
- Acceptance at threshold $\neq 0$

Data samples (ECM): $\psi(3770)$, $\psi(4040)$, Y(4230), Y(4260), Y(4360), Y(4420), Y(4600). Total: 7.4 fb⁻¹

Analysis for each E_{CM} and q, then combine statistics

• ISR kinematics: photon and $p\bar{p}$ -system with small opposite polar angles

Efficiencies: ~20% - γ -untagged, ~6% γ -tagged analysis

• From 2.0 GeV up, ISR analysis possible **Final statistics competitive with BaBar**

Prospects for $e^+e^- \rightarrow n\bar{n}/n\bar{n}\gamma_{ISR}$

Only two direct measurements of neutron effective FF

Very challenging: energies of n, \overline{n} are not fully deposited in EMC, bkg from γ, K_L^0 , beam, ...

BESIII sub-detector

EMC calorimeter CsI(TI): $15X_0$, $\lambda_1 = 171.5$ g/cm², $\rho = 4.53$ g/cm³ $\rightarrow 52\%$ n, \overline{n} interact in EMC

 $\frac{MUC: Iron + resistive plates (under study)}{\lambda_{I} = 132.1 \text{ g/cm}^{2}, \rho = 7.874 \text{ g/cm}^{3}, 56 \text{ cm Fe thickness in}}$ barrel $\rightarrow ~96 \% n, \overline{n}$ interact in MUC

Expect the first measurement of R_{EM} with BESIII unprecedented statistics

Prospects for $e^+e^- \rightarrow n\bar{n}/n\bar{n}\gamma_{ISR}$

<u>Strategy:</u>

⇒ First identification of \bar{n} and γ_{ISR} : ⇒ EMC shower information (for $e^+e^- \rightarrow n\bar{n}\gamma_{ISR}$ Neural Network) for neutron identification ≽ event kinematics (geometry)

 $e^+e^-
ightarrow n\overline{n}$

n/*n* detection efficiencies of ~20/30% (efficiencies up to % level)
Main background from beam background processes
O Unprecedented statistics above 2.0 GeV (~300 evts at 2.4 GeV)

$\underline{e^+e^-} \rightarrow n\overline{n}\gamma_{ISR}$

- Only tagged analysis possible (efficiencies at per mil level)
- ➢ Increase detection efficiency using TOF, MUC
- ► Main background from $e^+e^- \rightarrow n\bar{n}\pi^0$ and $e^+e^- \rightarrow \gamma\gamma\gamma$

TMVA overtraining check for classifier: MLP

"What happens with the baryon structure when

a light quark is replaced by a heavier one?"

Status of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ FFs

From Babar, $e^+e^- \rightarrow \Lambda\overline{\Lambda}$ measured from threshold to 2.27 GeV, non-zero cross section (204 ± 60 ± 20) pb.

$$\sigma_{B\bar{B}}(q^2) = \frac{4\pi\alpha^2 C\beta}{3q^2} \left[|G_M(q^2)|^2 + \frac{1}{2\tau} |G_E(q^2)|^2 \right]$$

Coulomb factor C= 1 for neutral $B\overline{B}$ pair assuming coulomb acts after $B\overline{B}$ pair are built and they are as neutral point-like particles.

Expected to increase with the velocity near the threshold starting from ZERO.

 $\succ G_E = |G_E(q)|e^{i\Phi_E}, G_M = |G_M(q)|e^{i\Phi_M}$, relative phase $\Phi = \Phi_M - \Phi_E$ can be extracted from $\Lambda/\overline{\Lambda}$ polarization.

 $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ FFs from 2012 data

Data $\sqrt{s} = 2232.4$ **MeV, 1.0 MeV above** $\Lambda\overline{\Lambda}$ **threshold.** *Strategy for* $e^+e^- \rightarrow \Lambda\overline{\Lambda}, \Lambda \rightarrow p\pi^-, \overline{\Lambda} \rightarrow \overline{p}\pi^+$

i) The momentum of final states are too low to leave message in the detector.

ii) Antiproton interacting on the beam pipe will produce secondary particles, whose vertex is around 3 cm. iii) The yield of $\overline{\Lambda\Lambda}$ events is 43 ± 7 .

Strategy for $e^+e^- \rightarrow \Lambda \overline{\Lambda}, \overline{\Lambda} \rightarrow \overline{n}\pi^0$.

i) Multiply Variable Analysis tool (Boosted Decision Tree) is applied to separated from large background.

ii) The final states of π^0 has a mono-momentum around 105 MeV.

iii) The yield of $\Lambda\overline{\Lambda}$ events is 22 ± 6 .

$e^+e^- \rightarrow \Lambda \overline{\Lambda}$ FFs from 2012 data

Cross section does not vanish at threshold \longrightarrow Coulomb interaction at quark level?

Will be clarified with more data of 2015?

Prospects of $\Lambda\bar{\Lambda}$ FFs

Parity violating decay: $\Lambda \rightarrow p\pi$, emission of proton depends on Λ - polarisation

$$\frac{dN}{d\cos\theta_p} \propto 1 + \alpha_{\Lambda} P_n \cos\theta_p$$

(*) Angle between proton and polarization axis in mother's rest frame

Imaginary part of FFs leads to polarization observables:

$$P_n = -\frac{\sin 2\theta \sin \Delta \phi / \tau}{R \sin^2 \theta_{\Lambda} / \tau + (1 + \cos^2 \theta_{\Lambda}) / R} = \frac{3}{\alpha_{\Lambda}} \langle \cos \theta_p \rangle$$

From BESIII 2015 data: 15 points above $\Lambda\overline{\Lambda}$ threshold!

Expected statistical accuracies for P_n between 6% and 17% Expected statistical accuracies for $R = |G_E|/|G_M| = 1$ between 14% and 29%

Complete determination of TL FFs possible!!

Prospects for $\Lambda_C \overline{\Lambda_C}$ at threshold

 G_E and G_M in S/D wave form: $\sqrt{\tau} G_E = G_S - 2G_D$, $G_M = G_S + G_D$

At threshold, only S wave in principle.

Belle ISR process with $\Lambda_C \rightarrow pK_s, pK^-\pi^+, \Lambda\pi^+$ $\sigma_{M_0} = 0.15 \ nb \rightarrow no \ D \ wave?$

Assuming the same total number of events, the statistical error in retreiving $|G_E|/|G_M|$, from the angular distribution depends almost linearly on $|G_E|^2/|G_M|^2$

W=4.575GeV at BESIII,

 $L = 42 \text{ pb}^{-1} \rightarrow dR/R^{\sim}23\%$ (done)

Assuming R~2 (like BaBar) L=200 pb⁻¹ \rightarrow dR/R~10%

Proposal have been made to collect more L_{int}

Prospects for other hyperon TL-FFs (2015, 2014, 2011 data)

 $e^+e^- \rightarrow \Lambda \overline{\Sigma^0}, \overline{\Sigma^0} \Sigma^0$ previously measured by BaBar, no $\widehat{\mathfrak{g}}$ R_{em} extraction possible $\widehat{\mathfrak{g}}$

$$e^+e^- \to \Lambda \overline{\Sigma^0}, \overline{\Sigma^0}\Sigma^0, \overline{\Sigma^-}\Sigma^+, \overline{\Sigma^+}\Sigma^-, \overline{\Xi^0}\Xi^0, \overline{\Xi^+}\Xi^-, \overline{\Omega^+}\Omega^-:$$

measurements of effective FF and $~R_{_{em}}$ and relative phase $\Delta\Phi$ at single energy points possible

$$= BESIII high luminosity scan (2015)$$

$$= BESIII scan (2014 + 2012 + 2011)$$

$$= \Sigma \Sigma \Sigma \Sigma \Lambda \Lambda \Lambda_c \Lambda_c$$

$$= 10^{3} \Lambda \Lambda_{c}$$

$$= 10^{2} \Lambda_{c}$$

 $e^+e^- \rightarrow \overline{\Lambda_c^-} \Lambda_c^+$:

measurements of effective FF,

 \mathbf{R}_{em} and $|\mathbf{G}_{\text{M}}|$ at threshold possible

$E_{e^+e^-}$ (GeV)	$L \ (pb^{-1})$	$\epsilon_{\Lambda \overline{\Sigma^0}}$ (%)	$\sigma_{\Lambda \overline{\Sigma^0}} (pb)$	$N_{\Lambda \overline{\Sigma^0}}$	$\epsilon_{\Sigma^0\overline{\Sigma^0}}$ (%)	$\sigma_{\Sigma^0 \overline{\Sigma^0}} (pb)$	$N_{\Sigma \overline{\Sigma^0}}$
2.309	20	4	374	123			
2.386	20	8	40	26	4	351	115
2.395	55	8	40	72	7	100	158
2.644	65	15	6	24	15	25	100
2.9	100	17	2	14	17	3.4	24
2.981	15	17	1.5	1.6	17	3.0	3

10 fold more events of the world data could be get!!!

Summary

- BESIII excellent laboratory for hadron form factor measurements: scan data + ISR tecnique.
- □ Proton Form Factors and their ratio have been measured using a small amount of data.
- $\square Results on \Lambda \overline{\Lambda} just released.$
- □ New high statistics data between 2.0 and 3.1 GeV will significantly improve FFs measurements

for $p, n, \Lambda, \Xi, \Omega, \Sigma, \Lambda_c$. Also from ISR measurements exciting results for nucleon FFs expected.

- Other related topics being studied (not reviewed here):
 - ISR technique allows access to energies below 2 GeV: the first result is the charged pion (see Yaqian Wang's report)
 - **D** Space-like transition FFs of mesons (di- γ contributions to (g_u -2) (see Christoph Redmer's report))

THANKS FOR YOUR ATTENTION!

Time-like FFs at BESIII

R Value

1

Data collected at BESIII

Data sample	Lint	Energy
J/ψ	~0.45 fb-1	3.097
ψ'	~0.8 fb	3.686
ψ"	2.9 fb-1	3.773
хуz	(0.5+1.9+0.5+ 1.0+0.5) fb ⁻¹	(4.2-4.6)
scan	~12 pb ⁻¹	2.23, 2.4, (3.05-3.08)
	0.85 fb ⁻¹	(3.85-4.60)
	525.5 pb ⁻¹	2.00-3.08

Prospects of $e^+e^- \rightarrow p\bar{p}\gamma_{ISR}$

- ♦ Continuous q²-range available: $m_{th}^2 < q^2 < s$
- Full angular distribution in hadronic center-of-mass
- Detection efficiency independent of q² and hadronic angular distribution
- \clubsuit Acceptance at threshold $\neq 0$

Data samples (ECM): ψ(3770),ψ(4040), Y(4230), Y(4260), Y(4360), Y(4420), Y(4600). Total: 7.4 fb-1

Analysis for each E_{CM} and q, then combine statistics

• ISR kinematics: photon and pp-system with small opposite polar angles

Efficiencies: ~20% -γ-untagged, ~6% γ-tagged analysis

• From 2.1 GeV up untagged-photon analysis possible **Final statistics competitive with BaBar**

To get the same result as BABAR, the luminosity needed at BESIII:

	E=10579 MeV	L=450 pb ⁻¹	
	E=4260 MeV	L = 64.8 pb ⁻¹	
	E=4040 MeV	L = 56.6 pb ⁻¹	
	E=3770 MeV	L = 47.0 pb ⁻¹	
	E=3686 MeV	L = 44.1 pb ⁻¹	
	E=3100 MeV	L = 25.6 pb ⁻¹	
	E=2232 MeV	L = 4.8 pb ⁻¹	
	Theoretical calculation		
Lresh/Lrard	0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 2000 2500 3	000 3500 4000 We (MeV)	
		vv ₀ (iviev)	