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Purpose 1: to present a model for the Kπ vector form factor using a 
dispersive representation and incorporating constraints 
from Kl3 decays suited to describe both τ→Kπντ and Kl3 
decays simultaneously

because a good knowledge of the Kπ f.f.’s is of 
fundamental importance for the determination of  
Vus from Kl3 decays

Why?

Purpose 2:

to further constrain the properties of the 
K*(1410) vector resonance

Why?

to present a combined analysis of the τ➞KSπντ 
and Kηντ decays



Outline:

in collab. with D. R. Boito, S. González Solís, M. Jamin and P. Roig, 
EPJC 59 (2009) 821, JHEP 09 (2010) 031, JHEP 10 (2013) 039 and JHEP 09 (2014) 042
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● Introduction

● Kl3 decays are the main route towards the determination of | Vus|2

H. Leutwyler and M. Roos, ZPC 25 (1984) 91

�Kl3 / |Vus|2|F+(0)|2IKl3

with

IKl3 =
1

m8
K

Z
dt (p.s.)

h
F̃+(t)2 + ⌘(t, ml)F̃0(t)2

i

and

F+,0(0) the normalization from ChPT, Lattice

F̃+,0(q2) the energy dependence from (R)ChPT, dispersion relations

●

●



Kπ f.f. representation for τ→Kπντ decays 

Kπ f.f. representation for Kl3 decays 

●Kπ form factors

Definition
vector f.f. scalar f.f.

with

slope curvature

In this kinematical region the f.f. are real

In this kinematical region the f.f. are complex

Taylor expansion inadmissible more sophisticated treatments



●Kπ form factors

Kπ f.f. dispersive representations

Suited to described both τ→Kπντ and Kl3 decays



Our model for the vector f.f.

● Fit to τ→Kπντ 

After a detailed analysis in D. R. Boito, R. Escribano and M. Jamin, EPJC 59 (2009) 821

with and

Three-times-subtracted dispersion relation

Our model for the phase

where

2 vector resonances form inspired by RChPT
M. Jamin, A. Pich and J. Portolés, PLB 640 (2006) 176 & 664 (2008) 78and

cut-off to check stability

Physical masses and widths are obtained from

for s→sR with

R. Escribano et. al., EPJC 28 (2003) 107 



Model for the scalar f.f.

Differential decay distribution

● Fit to τ→Kπντ 

with normalized vector f.f. normalized scalar f.f.

and

D. Epifanov et. al. (Belle Collaboration), PLB 654 (2007) 65

with

Ansatz to analyse the data:

M. Jamin, J. A. Oller and A. Pich, NPB 622 (2002) 279

M. Antonelli et. al.,
Eur. Phys. J. C69 (2010) 399 

Coupled-channel analysis (analytic and unitary)



Fit to Belle spectrum

● Fit to τ→Kπντ with restrictions from Kl3 

full fit

scalar
contribution

vector
contribution

fit region

D. R. Boito, R. Escribano and M. Jamin, JHEP 09 (2010) 031



Results

● Fit to τ→Kπντ with restrictions from Kl3 M. Antonelli et. al.,
Eur. Phys. J. C69 (2010) 399 



K*(892)± pole mass

● Fit to τ→Kπντ with restrictions from Kl3 

D. R. Boito, R. Escribano and M. Jamin,
JHEP 09 (2010) 031



K*(892)± pole width

● Fit to τ→Kπντ with restrictions from Kl3 



● Fit to τ→Kπντ with restrictions from Kl3 



● Fit to τ→Kπντ with restrictions from Kl3 



We have presented a model aimed at describing the Kπ vector 
form factor using a dispersive representation and 
incorporating constraints from Kl3 decays suited to describe 
both τ→Kπντ and Kl3 decays simultaneously

A good detemination of the Kπ vector f.f. and resonance 
parameters is obtained from a fit of the τ→Kπντ spectrum

Competitive results for the K*(892)± pole mass and width, 
slope and curvature parameters, Kl3 phase-space integrals, 
and Kπ I=1/2 P-wave scattering phase and threshold 
parameters are obtained

A combined fit of the τ→Kπντ and Kl3 spectra should be done 
in the future

●Conclusions: Intermezzo



●Reason for a τ→Kηντ analysisExperimental data analysis ⌧− → KS⇡
−⌫⌧

⌧− → KS⇡−⌫⌧ Belle’s data Phys. Lett. B 654 (2007) 65 [arXiv:0706.2231]
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Precise experimental data :
t- Æ KS p- nt seems to be a good source for

determining the K*-H892L resonance parameters

Less precise experimental data.
Our proposal : to add t- Æ K- hnt to the fit in order
to constraint the K*-H1410L resonance parameters
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Scalar contributions

Figure 1. Belle τ− → KSπ−ντ (red solid circles) [9] and τ− → K−ηντ (green solid squares) [20]
measurements as compared to our best fit results (solid black and blue lines, respectively) obtained
in combined fits to both data sets, as presented in eq. (3.3). Empty circles (squares) correspond to
data points which have not been included in the analysis. The small scalar contributions have been
represented by black and blue dashed lines showing that while the former plays a role for the Kπ
spectrum close to threshold, the latter is irrelevant for the Kη distribution.

added this variation in quadrature to the statistical uncertainty. We then obtain

B̄Kπ = (0.404± 0.012)% , MK∗ = 892.03± 0.19 , ΓK∗ = 46.18± 0.44 ,

MK∗′ = 1305+16
−18 , ΓK∗′ = 168+65

−59 , γKπ = γKη =
(
−3.4+1.2

−1.4

)
·10−2 ,

λ′
Kπ = (23.9± 0.9)·10−3 , λ′′

Kπ = (11.8± 0.2)·10−4 , B̄Kη = (1.58± 0.10)·10−4 ,

λ′
Kη = (20.9± 2.7)·10−3 , λ′′

Kη = (11.1± 0.5)·10−4 , (3.3)

were like before all dimensionful quantities are given in MeV. Our final fit results are

compared to the measured Belle τ− → KSπ−ντ and τ− → K−ηντ distributions [9, 20] in

figure 1. Satisfactory agreement with the experimental data, in accord with the observed

χ2/n.d.f. of order one, is seen for all data points. The Kπ spectrum is dominated by the

contribution of the K∗(892) resonance, whose peak is neatly visible. The scalar form factor

contribution, although small in most of the phase space, is important to describe the data

immediately above threshold. There is no such clear peak structure for the Kη channel

as a consequence of the interplay between both K∗ resonances. The corresponding scalar

form factor in this case is numerically insignificant.

The correlation coefficients corresponding to our reference fit with scut = 4GeV2

can be read from table 3. As anticipated, there is a large correlation between the set

– 10 –

Results of the combined analysis

Experimental data analysis ⌧− → K−⌘⌫⌧
We relate the experimental data with the differential decay
distribution from theory through

dNevents

d
√

s
= Nevents�bin

1
�⌧BR(⌧ → P−P0⌫⌧)

d� �⌧− → P−P0⌫⌧�
d
√

s
(4)

d� �⌧− → P−P0⌫⌧ �
d
√

s
= G2

F M3
⌧

32⇡3s
SEW �VusF P−P0+ (0)�2 �1 − s

M2
⌧

�2

(7)

×��������1 + 2s
M2

⌧

�q3
P−P0(s)�F̃ P−P0+ (s)�2 + 3�2

P−P0

4s
qP−P0(s)�F̃ P−P0

0 (s)�2������� (8)

P−P0 = KS⇡
− → BRBelle

exp = 0.404% Nevents = 53113 �bin = 0.0115 GeV�bin

P−P0 = K−⌘ → BRBelle
exp = 1.58 ⋅ 10−4 Nevents = 1271 �bin = 0.025 GeV�bin

�⌧ = 2.265 ⋅ 10−12

Function minimised in our fit

�2 =�
bin
�N th −N exp

�N exp
�2 + �

KS⇡
−,K−⌘

� B̄th − B̄exp

�B̄exp
�2
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R. Escribano, S. González-Solís,
M. Jamin and P. Roig, JHEP 09 (2014) 042



●
Fit results

Obtained parameters from a joint fit to ⌧− → KS⇡−⌫⌧ and ⌧− → K −⌘⌫⌧
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MK∗−(892) = 892.03 ± 0.19 MeV

�K∗−(892) = 46.18 ± 0.44 MeV

MK∗−(1410) = 1304 ± 17 MeV

�K∗−(1410) = 171 ± 62 MeV

�K⇡ = �K⌘ = −3.4+1.2−1.4 ⋅ 10−2

B̄K⇡ = (0.0404 ± 0.012)%
B̄K⌘ = (1.58 ± 0.10) ⋅ 10−4

�′K⇡ = (23.9 ± 0.9) ⋅ 10−3

�′K⌘ = (20.9 ± 2.7) ⋅ 10−3

�′′K⇡ = (11.8 ± 0.2) ⋅ 10−4

�′′K⌘ = (11.1 ± 0.5) ⋅ 10−4

�2�d .o.f = 108.1�105 = 1.03

�������no gain

�������improvement

�������isospin violation?

�������isospin violation?

⌧− → K −⇡0⌫⌧&K`3

⇑
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●Future prospects for Belle-I and Belle-II
J
H
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❍❍❍❍❍❍Error

Data
Current Belle-I Belle-I Kπ Belle-I Kη Belle-II Belle-II Kπ Belle-II Kη

B̄Kπ(%) 0.404± 0.012 ±0.005 ±0.005 ±0.012 †(0.001) †(0.001) ±0.012

MK∗ 892.03± 0.19 ±0.09 ±0.09 ±0.19 †(0.02) †(0.02) ±0.19

ΓK∗ 46.18± 0.44 ±0.20 ±0.20 ±0.44 †(0.02) †(0.03) ±0.42

MK∗′ 1304± 17 †(7) †(9) †(8) †(1) †(1) †(1)

ΓK∗′ 168± 62 †(19) †(24) †(25) †(3) †(4) †(11)

λ′
Kπ × 103 23.9± 0.9 †(0.3) †(0.3) ±0.8 †(0.04) †(0.04) ±0.8

λ′′
Kπ × 104 11.8± 0.2 ±0.07 ±0.07 ±0.2 †(0.01) †(0.01) ±0.2

B̄Kη × 104 1.58± 0.10 ±0.05 ±0.10 ±0.05 †(0.01) ±0.10 †(0.01)

γKη(= γKπ)× 102 −3.3± 1.3 †(0.3) †(0.3) †(0.4) †(0.04) †(0.04) ◦(0.3)

λ′
Kη × 103 20.9± 2.7 †(0.7) ±2.7 †(0.8) †(0.10) ±2.7 ◦(0.4)

λ′′
Kη × 104 11.1± 0.5 †(0.2) ±0.5 †(0.2) †(0.02) ±0.5 †(0.06)

Table 4. The errors of our final results (3.3) are compared, in turn, to those achievable by
analysing the complete Belle-I data sample, and updating only the KSπ− or K−η analyses. The
last three columns show the potential of fitting all data collected by Belle-II and the same only
for KSπ− or for K−η (assuming the other mode has not been updated to include the complete
Belle-I data sample). Current Belle KSπ− (K−η) data correspond to 351 (490) fb−1 for a complete
data set of ∼ 1000 fb−1 = 1 ab−1. Expectations for Belle-II correspond to 50 ab−1. All errors
include both statistical and systematic uncertainties. † means that statistical errors (in brackets)
will become negligible, while ◦ signals a tension with the current reference best fit values. We thank
Denis Epifanov for conversations on these figures and on expected performance of Belle-II at the
detector and analysis levels. All errors have been symmetrised for simplicity.

and τ− → K−ηντ decays. This study was motivated by (our) separate earlier works on the

two decay modes considering them as independent data sets. In particular, it was noticed

in [18] that the Kη decay channel was rather sensitive to the properties of the K∗(1410)

resonance as the higher-energy region is less suppressed by phase space.

Our description of the dominant vector form factor follows the work of ref. [15], and

proceeds in two stages. First, we write a Breit-Wigner type representation (2.4) which also

fulfils constraints from χPT at low-energies. In eq. (2.4), we have resummed the real part

of the loop function in the resonance denominators, but as was discussed above, employing

the following dispersive treatment, this is not really essential. It mainly entails a shift in

the unphysical mass and width parameters mn and γn. Second, we extract the phase of

the vector form factor according to eq. (2.11) and plug it into the three-times subtracted

dispersive representation of eq. (2.8). This way, the higher-energy region of the form factor,

which is less well know, is suppressed, and the form factor slopes emerge as subtraction

constants of the dispersion relation. A drawback of this description is that the form factor

does not automatically satisfy the expected 1/s fall-off at very large energies. Still, in

the region of the τ mass (and beyond), our form-factor representation is a decreasing

function such that the deficit should be admissible without explicitly enforcing the short-

distance constraint, thereby leaving more freedom for the slope parameters to assume their

physical values.

– 13 –



●Conclusions: Finale

Conclusions

Conclusions

A good description of the vector form factor (by
analyticity+unitarity arguments) is crucial to unveil the parameters
of the intermediate resonances which drive the decays
Fitting both decay spectra together we have considerable
improved the determination of the K ∗−(1410) mass while we
slightly reduced the uncertainty of the width
Call for (an unfolded) analysis of ⌧− → K −⇡0⌫⌧ for unveiling
possible isospin violations on the low-energy parameters �

′(′′)
Agreement between theory and Belle’s data
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Limitations: only τ➞KSπντ is published, no access to isospin violations

τ➞ Kηντ not very precise, convoluted with detector effects

J
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0
9
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0
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4
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0
4
2

In our combined dispersive analysis of the (Kπ)− and K−η decays we are currently

limited by three facts: there are only published measurements of the KSπ− spectrum (and

not of the corresponding K−π0 channel), the available K−η spectrum is not very precise

and the corresponding data are still convoluted with detector effects. The first restriction

prevents us from cleanly accessing isospin violations in the slope parameters of the vector

form factor. From our joint fits, we have however managed to get an indication of this

effect. The second one constitutes the present limitation in determining the K∗(1410)

resonance parameters but one should be aware that our approach to avoid the last one

(assuming that the KSπ− unfolding function gives a good approximation to the one for

the K−η case) adds a small (uncontrolled) uncertainty to our results that can only be

fixed by a dedicated study of detector resolution and efficiency. In this respect it would be

most beneficial, if unfolded measured spectra would be made available by the experimental

groups, together with the corresponding bin-to-bin correlation matrices.

In table 1, we have compared slightly different options to implement constraints from

isospin into the fits, and in table 2, we studied the dependence of our fits on the cut-off scut
in the dispersion integral. Our reference fit is given by the second column of table 1 and

adding together the statistical fit uncertainties with systematic errors from the variation of

scut, our final results are summarised in eq. (3.3). The pole position we find for the K∗(892)

resonance is in perfect agreement with previous studies. The main motivation of this work

was, however, to exploit the synergy of the Kπ and Kη decay modes in characterising the

K∗(1410) meson. According to our results, the relative weight γ of both vector resonances

is compatible in theKπ andKη vector form factors, which supports our assumption of their

universality. With current data we succeed in improving the determination of the K∗(1410)

pole mass, but regarding the width, substantial uncertainties remain. Our central result

for these two quantities is

MK∗′ = (1304± 17) MeV , ΓK∗′ = (171± 62) MeV , (4.1)

where we have symmetrised the uncertainties listed in eq. (3.3).

We have then estimated the impact of future re-analyses including the complete Belle-I

data sample and all expected data from Belle-II on these decay modes. This projection

reveals (in both cases) that the increased statistics will most probably require a refined

theoretical framework to match the experimental precision in the determination of the

K∗(1410) resonance parameters. While our description so far is purely elastic, this may

include incorporation of coupled channels to take into account inelastic effects along the

lines of refs. [13, 17], which would allow for a proper inclusion of higher channels in the

resonance widths. Belle-II data would also lead to much improved tests of our low-energy

description and the K∗(892) dominance region. Knowledge of isospin breaking effects on

the slope parameters could be drastically improved by measuring the hadronic invariant

mass distribution in τ− → K−π0ντ decays, which would by the way increase the accuracy

in the extraction of the K∗(892) pole position. We hope that this study will give additional

motivation to the B-factory collaborations for performing the respective analyses.

– 14 –
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Analyticity + Unitarity

●Kπ form factors

Kπ f.f. dispersive representations

Analyticity

Muskelishivili-Omnès equation

solution

generalized solution (n subtractions at s=0)

Recent dispersive representations:

B. Moussallam, EPJC 53 (2008) 401

V. Bernard et. al., PRD 80 (2009) 034034

D. R. Boito, R. Escribano and M. Jamin, EPJC 59 (2009) 821

V. Bernard et. al., PLB 638 (2006) 480

M. Jamin, J. A. Oller and A. Pich, NPB 587 (2000) 331 
& 622 (2002) 279, PRD 74 (2006) 074009



Results

● Fit to τ→Kπντ 
Update of D. R. Boito, R. Escribano and M. Jamin, EPJC 59 (2009) 821



Fit to Belle spectrum

● Fit to τ→Kπντ 

D. Epifanov et. al. (Belle Collaboration), PLB 654 (2007) 65
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● Fit to τ→Kπντ with restrictions from Kl3 

Kl3 phase-space integrals

[9] M. Antonelli et. al.,
Eur. Phys. J. C69 (2010) 399 



Kπ I=1/2 P-wave scattering phase

● Fit to τ→Kπντ with restrictions from Kl3 
K*π threshold

threshold
parameters



Kπ I=1/2 P-wave threshold parameters

● Fit to τ→Kπντ with restrictions from Kl3 

[60] V. Bernard, N. Kaiser and U. G. Meißner, NPB 357 (1991) 129 

[48] P. Büttiker, S. Descotes-Genon and B. Moussallam, EPJC 33 (2004) 209 

[61] J. Bijnens, P. Dhonte and P. Talavera, JHEP 05 (2004) 036

[62] V. Bernard, N. Kaiser and U. G. Meißner, NPB 364 (1991) 283 



●Results of the τ→Kηντ analysis
Predictions based on the τ→Kπντ analysis

between them that were neglected in obtaining Fig. 1 and the JPP result in table 2.
From these results we conclude that quite likely the BW model is a too rough approach

to the problem unless our reference values for � and the K?
(1410) resonance parameters

were a bad approximation. We will check this in the next section. On the contrary, the
predictions discussed above hint that JPP and BEJ are appropriate for the analysis of
⌧� ! K�⌘⌫⌧ data that we will pursue next.
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Figure 1. BaBar (blue) [42] and Belle (red) [41] data for the ⌧� ! K�⌘⌫⌧ decays are confronted
to the predictions obtained in the BW (dotted), JPP (solid) and BEJ (dashed) approaches (see the
main text for details) which are shown together with the corresponding one-sigma error bands in
yellow, light blue and light green, respectively.

Source Branching ratio �2/dof

Dipole Model (BW)
�
0.78+0.17

�0.10

�
· 10�4

8.3

JPP
�
1.47+0.14

�0.08

�
· 10�4

1.9

BEJ (1.49± 0.05) · 10�4
1.5

Experimental value (1.52± 0.08) · 10�4 -

Table 2. Predicted branching ratio of the ⌧� ! K�⌘⌫⌧ decays according to the different ap-
proaches used (see the items above eq. (5.1) for details). The corresponding �2/dof values are also
given and the PDG branching fraction is given for reference.
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K. Inami et. al. (Belle Collaboration), PLB 672 (2009) 109
P.  del Amo Sanchez et. al. (BaBar Collab.), PRD 83 (2011) 032002

R. Escribano, S. González-Solís and 
P. Roig, JHEP 10 (2013) 039



●Results of the τ→Kηντ analysis
Fit to the τ→Kηντ experimental data
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Figure 2. BaBar (blue) [42] and Belle (red) [41] data for the ⌧� ! K�⌘⌫⌧ decays are confronted
to the best fit results obtained in the BW (dotted), JPP (solid) and BEJ (dashed) approaches (see
the main text for details) which are shown together with the corresponding one-sigma error bands
in light green, pink and orange, respectively. The BW curve corresponds to the one-parameter fit
while the JPP and BEJ ones correspond to three-parameter fits.

K⌘ channels in meson-meson scattering, which affects the solution of the coupled system
of integral equations and specially the value of the K�⌘0 scalar form factor, that is anyway
suppressed to some extent.

Source Branching ratio
Dipole Model (BW) (Fit) (1.45+3.80

�0.87) · 10�6

JPP (Fit) (1.00+0.37
�0.29) · 10�6

BEJ (Fit) (1.03+0.37
�0.29) · 10�6

Experimental bound <4.2 · 10�6 at 90% C.L.

Table 6. Predicted branching ratios for the ⌧� ! K�⌘0⌫⌧ decays. The BaBar upper limit is also
shown [44].

In Fig. 4 we also plot the correlation between the ⌧� ! K�⌘⌫⌧ and ⌧� ! K�⌘0⌫⌧
branching ratios according to the best fit JPP result at one sigma. The correlations between
the parameters are neglected. Since the vector (scalar) form factor dominates the former
(latter) decays and their parameters are independent the plot does not show any sizeable
correlation between both measurements, as expected. As a result, if new data on the
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this comparison. In the JPP and BEJ fits to the K⌘ channel the scalar form factor was
obtained solving dispersion relations for the three-body problem.

We have checked that the K⌘(0) channels are not sensitive either to the K?
(892) pa-

rameters or to the slopes of the form factor, �0(0)
+ (BEJ). We have borrowed this information

from the K⇡ system. This task was straightforward in BW and JPP although in BEJ we
noticed that the �

0(0)
+ parameters were sensitive to isospin breaking effects that we had to

account for. Once this was done we could fit the K?
(1410) resonance pole parameters and

its relative weight with respect to the K?
(892) meson, �. Our results for these, with masses

and widths in MeV, are

MK?0
= 1327

+30
�38, �K?0

= 213

+72
�118, � = �0.051+0.012

�0.036 , (8.1)

in the dispersive representation (BEJ) and

MK?0
= 1332

+16
�18, �K?0

= 220

+26
�24, � = �0.078+0.012

�0.014 , (8.2)

for the exponential parametrization (JPP). Our determination of these parameters has
shown to be competitive with its extraction from the ⌧� ! (K⇡)�⌫⌧ decays. To illustrate
this point, we average the JPP and BEJ determinations from the K⇡ [30, 32] and K⌘

systems, respectively, to find

MK?0
= 1277

+35
�41, �K?0

= 218

+95
�66, � = �0.049+0.019

�0.016 , (8.3)

from K⇡ and

MK?0
= 1330

+27
�41, �K?0

= 217

+68
�122, � = �0.065+0.025

�0.050 , (8.4)

from K⌘. We have thus opened an alternative way of determining these parameters. New,
more precise data on the ⌧� ! (K⇡)�⌫⌧ and ⌧� ! K�⌘⌫⌧ decays will make possible a
more accurate determination of these parameters.

Finally we have benefited from this study of the ⌧� ! K�⌘⌫⌧ decays and applied it
to the ⌧� ! K�⌘0⌫⌧ decays, were our predictions respect the upper limit found by BaBar
and hint to the possible discovery of this decay mode in the near future.

In this way we consider that we are in position of providing TAUOLA with theory-
based currents that can describe well the ⌧� ! K�⌘(0)⌫⌧ decays, based on the exponential
parametrization developed by JPP and the dispersive representation constructed by BEJ.

To conclude, differential distributions of hadronic tau decays provide important in-
formation for testing diverse form factors and extracting the corresponding parameters
increasing our knowledge of hadronization in the low-energy non-perturbative regime of
QCD. It will be interesting to see if our predictions for the ⌧� ! K�⌘0⌫⌧ decays are cor-
roborated and if more precise data on the ⌧� ! K�⌘⌫⌧ decays demand a more refined
treatment. Finally, we emphasize the need of giving pole resonance parameters irrespective
of the approach employed, either in a theorists’ article or in a publication by an experimental
collaboration.
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●Results of the combined analysis
Experimental data analysis ⌧− → K−⌘⌫⌧
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●Results of the τ→Kηντ analysis
JPP vector form factor

the imaginary part of the loop function (giving the resonance width) was shifted to the
denominator by hand, which resulted in an expression analogous to
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This approach was also followed in the K⇡ analyses. In this way, analyticity holds pertur-
batively up to next-to-leading order.

A.2 BEJ vector form factor

Analyticity warrants that the vector form factor must satisfy a dispersion relation and
unitarity that the dispersion relation admits a well-known closed-form solution within the
elastic approximation referred as the Omnès representation. This simple and elegant solu-
tion is unrealistic at the practical level since (as a consequence of analyticity) it demands
the detailed knowledge of the form factor phase up to infinity. This problem is circumvented
by considering additional subtractions (one -the normalization at the origin- is needed for
the convergence of the form factor and is best determined from lattice QCD) which increase
the weight of the lower-energy region and damp the problematic higher-energy zone, since
an n-times-subtracted form factor exhibits a suppression of s�(n+1) in the integrand. This
results in a transfer of the information that was previously encoded in the high-energy part
of the integral into n � 1 subtraction constants. The analyses of the ⇡⇡ [91, 92] and K⇡

[31, 32] vector form factors within this framework shows an optimal description of the data
with three subtractions. This result will be followed using

ef+(s) = exp
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where sK⇡ = (mK+m⇡)
2 16 and the two subtraction constants are related to the low-energy

expansion of the ef+(s) form factor:
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while the value of the cut-off, scut, should in principle be varied to estimate the associated
systematic error.

The input phase, �(s), is obtained as

�(s) = tan
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"
Im

ef+(s)
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ef+(s)

#
, (A.8)

where ef+(s) resums the real part of the two-point loop function in the denominator [75, 102]:
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m2
K? � K? eHK⇡(0) + �s

D(mK? , �K?
)

� �s

D(mK?0 , �K?0 )
. (A.9)

16The values of the masses that are actually used in this relation are discussed in section 5.
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+

s

m2
⇡
+

1

2

�00
+

s2

m4
⇡
+ ... , (A.7)

while the value of the cut-off, scut, should in principle be varied to estimate the associated
systematic error.

The input phase, �(s), is obtained as

�(s) = tan

�1

"
Im

ef+(s)
Re

ef+(s)

#
, (A.8)

where ef+(s) resums the real part of the two-point loop function in the denominator [75, 102]:

ef+(s) =

m2
K? � K? eHK⇡(0) + �s

D(mK? , �K?
)

� �s

D(mK?0 , �K?0 )
. (A.9)

16The values of the masses that are actually used in this relation are discussed in section 5.
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The denominators in eq. (A.9) are

D(mn, �n) ⌘ m2
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where
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192⇡FKF⇡
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mn
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s

m2
n

�3
K⇡(s)

�3
K⇡(m

2
n)

, (A.11)

and �(m2
P ) = �PP (s) =

q
1� 4m2

P
s is the two-body phase-space factor.

A.3 Scalar form factor in both approaches

In Ref.[76] the multi-channel Muskelishivili-Omnès problem for three channels (K⇡, K⌘,
K⌘0 for i = 1, 2, 3) is solved. Each of the scalar form factors f i

0(s) is then coupled to the
others via

f i
0(s) =

1

⇡

3X

j=1

Z 1

si

ds0
�j(s

0
)f j

0 (s
0
)ti!j

0 (s0)?

(s0 � s� i0)
, (A.12)

where si is the threshold for channel i and ti!j
0 are partial wave T -matrix elements for the

i ! j scattering. The unitarized form factors are obtained solving the coupled dispersion
relations arising from eq. (A.12) imposing chiral symmetry constraints and using T -matrix
elements from Ref.[75] providing an accurate description of meson-meson scattering data.
In the elastic approximation, eq. (A.12) reduces to the usual single-channel Omnès equation.
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J
H
E
P
0
9
(
2
0
1
4
)
0
4
2

❳❳❳❳❳❳❳❳❳❳❳❳Fitted value

scut(GeV2)
3.24 4 9 ∞

B̄Kπ(%) 0.402± 0.013 0.404± 0.012 0.405± 0.012 0.405± 0.012

(Bth
Kπ)(%) (0.399) (0.402) (0.403) (0.403)

MK∗ 892.01± 0.19 892.03± 0.19 892.05± 0.19 892.05± 0.19

ΓK∗ 46.04± 0.43 46.18± 0.42 46.27± 0.42 46.27± 0.41

MK∗′ 1301+17
−22 1305+15

−18 1306+14
−17 1306+14

−17

ΓK∗′ 207+73
−58 168+52

−44 155+48
−41 155+47

−40

γKπ = γKη = γKη = γKη = γKη

λ′
Kπ × 103 23.3± 0.8 23.9± 0.7 24.3± 0.7 24.3± 0.7

λ′′
Kπ × 104 11.8± 0.2 11.8± 0.2 11.7± 0.2 11.7± 0.2

B̄Kη × 104 1.57± 0.10 1.58± 0.10 1.58± 0.10 1.58± 0.10

(Bth
Kη)× 104 (1.43) (1.45) (1.46) (1.46)

γKη × 102 −4.0+1.3
−1.9 −3.4+1.0

−1.3 −3.2+0.9
−1.1 −3.2+0.9

−1.1

λ′
Kη × 103 18.6± 1.7 20.9± 1.5 22.1± 1.4 22.1± 1.4

λ′′
Kη × 104 10.8± 0.3 11.1± 0.4 11.2± 0.4 11.2± 0.4

χ2/n.d.f. 105.8/105 108.1/105 111.0/105 111.1/105

Table 2. Reference fit results obtained for different values of scut in the dispersive integral are
displayed. Dimensionful parameters are given in MeV. As a consistency check, for each of the fits
we give (in brackets) the value of the respective branching ratios obtained integrating eq. (2.1).

two and four subtraction constants in order to test the stability of our results with respect

to this choice. As in the previous analyses [15, 16] of the τ− → KSπ−ντ spectrum, the

changes in the results are well within our uncertainties. It is furthermore confirmed that

regarding final uncertainties three subtractions appears to be an optimal choice. This may,

however, change if the representation of the higher-energy region is improved, for example

through a coupled-channel analysis, such that this region requires less suppression. As a

second test, we have employed a variant of the form factor Ansatz (2.4) in which the real

part of the loop function H̃Kπ(s) is not resummed into the propagator denominator, but

into an exponential, as was for example suggested in refs. [12, 14] for the description of

τ → Kπντ decays. This type of Ansatz is further discussed in appendix A where also

direct fits of the corresponding form factors are described. Our test here, however, consists

in extracting the corresponding phase from this type of form factor according to eq. (2.11)

and plugging the respective phase into the dispersion relation (2.8). It is found that the

corresponding fits are almost identical to the ones described before, providing additional

faith on the robustness of the extracted parameters.

For presenting our final results, we have added to the statistical fit error a systematic

uncertainty due to the variation of scut. To this end, we have taken the largest variation

of central values while varying scut (which is always found at scut = 3.24GeV2) and have
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B̄Kπ MK∗ ΓK∗ MK∗′ ΓK∗′ λ′
Kπ λ′′

Kπ B̄Kη γKη = γKπ λ′
Kη λ′′

Kη

MK∗ −0.163 1

ΓK∗ 0.028 −0.060 1

MK∗′ −0.063 −0.104 −0.142 1

ΓK∗′ 0.126 0.130 0.292 −0.556 1

λ′
Kπ 0.800 −0.100 0.457 −0.244 0.432 1

λ′′
Kπ 0.928 −0.215 0.328 −0.166 0.304 0.942 1

B̄Kη −0.003 −0.005 −0.010 0.003 −0.001 −0.015 −0.009 1

γKη = γKπ −0.155 −0.173 −0.378 0.498 −0.878 −0.565 −0.373 0.019 1

λ′
Kη 0.058 0.028 0.117 0.050 0.337 0.182 0.128 0.434 −0.340 1

λ′′
Kη 0.035 −0.017 0.037 0.106 0.218 0.080 0.064 0.561 −0.174 0.971 1

Table 3. Correlation coefficients corresponding to our reference fit with scut = 4GeV2, second
column of table 1. In the fits where γKπ = γKη is not enforced, their correlation coefficient turns
out to be ≈ 0.67.

{B̄Kπ, λ′
Kπ, λ

′′
Kπ} which enables stable fits removing one of these parameters (the fit then

becomes somewhat less restrictive, though). Despite the correlation between λ′
Kη and λ

′′
Kη

also being nearly maximal, these parameters are less correlated with B̄Kη, implying that

all three are needed to reach convergence in the minimisation. For this reason we prefer to

keep B̄Kη as a data point in the joint analysis. Finally, we note a large correlation between

the parameters γKπ = γKη and ΓK∗′ which seems to be enhancing the corresponding errors

(this effect may in part be due to the three subtractions employed, which decrease the

sensitivity to the higher-energy region). In the fits where γKπ = γKη is not enforced, their

correlation coefficient is ≈ 0.67. This suggests that with more precise data in the future it

might be possible to resolve the current degeneracy between both.

Several comments regarding our final results of eq. (3.3) and the reference fit of table 1

are in order:

• Concerning the branching fractions, we observe that in theKSπ− channel our fit value

B̄Kπ, which is mainly driven by the explicit input, and the result when integrating

the fitted spectrum Bth
Kπ, are in very good agreement, pointing to a satisfactory

description of the experimental data. On the other hand, for the Kη case, one notes

a trend that the integrated branching fraction Bth
Kη turns out about 10% smaller than

the fit result B̄Kη, which points to slight deficiencies in the theoretical representation

of this spectrum. This issue should be investigated further in the future with more

precise data.

• The KSπ− slope parameters are well compatible with previous analogous analy-

sis [15, 16]. For the corresponding K−η slopes, we obtain somewhat smaller values,

which are, however, compatible with the crude estimates in ref. [18]. The fact that

the K−η slopes are about 2σ lower than the KSπ− slopes could be an indication of

isospin violations, or could be a purely statistical effect. (Or a mixture of both.) To

tackle this question and make further progress to disentangle isospin violations in the
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Fitted value Reference Fit Fit A Fit B Fit C

B̄Kπ(%) 0.404± 0.012 0.400± 0.012 0.404± 0.012 0.397± 0.012

(Bth
Kπ)(%) (0.402) (0.394) (0.400) (0.394)

MK∗ 892.03± 0.19 892.04± 0.19 892.03± 0.19 892.07± 0.19

ΓK∗ 46.18± 0.42 46.11± 0.42 46.15± 0.42 46.13± 0.42

MK∗′ 1305+15
−18 1308+16

−19 1305+15
−18 1310+14

−17

ΓK∗′ 168+52
−44 212+66

−54 174+58
−47 184+56

−46

γKπ × 102 = γKη −3.6+1.1
−1.5 −3.3+1.0

−1.3 = γKη

λ′
Kπ × 103 23.9± 0.7 23.6± 0.7 23.8± 0.7 23.6± 0.7

λ′′
Kπ × 104 11.8± 0.2 11.7± 0.2 11.7± 0.2 11.6± 0.2

B̄Kη × 104 1.58± 0.10 1.62± 0.10 1.57± 0.10 1.66± 0.09

(Bth
Kη)× 104 (1.45) (1.51) (1.44) (1.58)

γKη × 102 −3.4+1.0
−1.3 −5.4+1.8

−2.6 −3.9+1.4
−2.1 −3.7+1.0

−1.4

λ′
Kη × 103 20.9± 1.5 = λ′

Kπ 21.2± 1.7 = λ′
Kπ

λ′′
Kη × 104 11.1± 0.4 11.7± 0.2 11.1± 0.4 11.8± 0.2

χ2/n.d.f. 108.1/105 ∼ 1.03 109.9/105 ∼ 1.05 107.8/104 ∼ 1.04 111.9/106 ∼ 1.06

Table 1. Fit results for different choices regarding linear slopes and resonance mixing parameters
at scut = 4GeV2. See the main text for further details. Dimensionful parameters are given in MeV.
As a consistency check, for each of the fits we provide (in brackets) the value of the respective
branching fractions obtained by integrating eq. (2.1).

λ′
Kπ = λ′

Kη. It is seen that our approach is rather stable against these variations, as

the χ2/n.d.f. remains basically the same for the different scenarios. Also the values of

the fitted parameters are always compatible across all fits. The largest modification is

observed in fit A, where we fix λ′
Kπ = λ′

Kη, but allow for independent resonance mixing

parameters γ. This is partly expected since in the reference fit the former equality on the

slope parameters is only fulfilled at the 2σ level. Letting all parameters float in fit B yields

results which are nicely compatible with the reference fit, though for some parameters

resulting in slightly larger uncertainties. Finally, enforcing both, the linear slopes as well

as the mixing parameters to be equal also results in a compatible fit where now the largest

shift by about 2σ is found in λ
′′
Kη.

The theoretical uncertainty associated to the choice of scut is probed through the fits

presented in table 2 where, for the setting of our reference fit discussed previously, the values

3.24GeV2 (second column), 4GeV2 (third column), 9GeV2 (fourth column) and the scut →
∞ limit (last column) are used (scut = 4GeV2 corresponds to our reference fit in the second

column of table 1 and is repeated here for ease of comparison). The dependence of the fitted

parameters on the integral cut-off is similar to what was found in previous works (see, for

instance refs. [15, 16]) and allows to estimate the corresponding systematic error. In order

to corroborate our fits, we performed additional tests. We have also run fits considering
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Different choices regarding linear slopes and 
resonance mixing parameters


