

New results on exotic baryon resonances at LHCb

Liming Zhang (Tsinghua University)

On behalf of LHCb Collaboration

10th International Workshop on e⁺e⁻ collisions from Phi to Psi (USTC, Hefei, China)

Tetra- and Penta-quarks conceived at the birth of Quark Model

8419/TH.412

21 February 1964

Volume 8, number 3

PHYSICS LETTERS

1 February 1964

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M.GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members u_3^2 , $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (q q q), $(q q q q \bar{q})$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the representations 1, 8, and 10 that have been observed, while AN SU₃ MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING II *) G. Zweig CERN---Geneva *) Version I is CERN preprint 8182/TH.401, Jan. 17, 1964.

6) In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from AAAAA, AAAAAAA, etc., where A denotes an anti-ace. Similarly, mesons could be formed from AA, AAAA etc. For the low mass mesons and baryons we will assume the simplest possibilities, AA and AAA, that is, "deuces and treys".

. . .

These multiquark states would be short-lived ~10⁻²³ s "resonances" whose presences are detected by mass peaks & angular distributions showing the unique J^{PC} quantum numbers Curious history of pentaquark Θ^+ search See summary by [K. H. Hicks, Eur. Phys. J. H37 (2012) 1]

- No convincing states 50 years after Gell-mann paper proposing qqqqq states
 Predictions O⁺(model) could
- Prediction: Θ⁺(uudds̄) could exist with m ≈1530 MeV
- In 2003,10 experiments reported seeing narrow peaks of K⁰p or K⁺n, all >4 σ

HC

- High statistics repeats from JLab showed the original claims were fluctuation
- It was merely a case of "bump hunting"

Tetraquark

- Experimental evidence started to appear only recently
- Z(4430)⁺ (Belle, LHCb)

HC

- Both analyses performed full amplitude fits

- $Z_c(3900)^+$ and its families (BESIII)
- $Z_b(10610)^+$ and $Z_b(10650)^+$ (Belle)
- These give support to the possibility of pentaquark states

LHCb detector at LHC

 Advantages over e⁺e⁻ B-factories:

LHCb

- ~1000x larger b production rate
- produce bbaryons at the same time as Bmesons
- long visible lifetime of b-hadrons (no backgrounds from the other b-hadron)

Advantages over GPDs:

- RICH detectors for π/K/p discrimination (smaller backgrounds)
- Small event size allows large trigger bandwidth (up to 5 kHz in Run I); all devoted to flavor physics

LHCb PRL 115, 072001 (2015)

LHCb $\Lambda_b^0 \rightarrow J/\psi p K^-$

- The decay first observed by LHCb and used to measure Λ_b^0 lifetime:
 - LHCb-PAPER-2013-032 (PRL 111, 102003)

CHCb PRL 115, 072001 (2015)

 $\Lambda_b^0 \rightarrow J/\psi p K^-$: unexpected structure in $m_{J/\psi p}$

 Λ (1520) and other Λ^* 's \rightarrow p K⁻

- Unexpected, narrow peak in $m_{J/\psi p}$
- Many checks done to ensure it is not an "artifact" of selection:
 - − Veto $B_s \rightarrow J/\psi K^-K^+ \& B^0 \rightarrow J/\psi K^-\pi^+$ after changing p to K, or K to π
 - Clone and ghost tracks carefully eliminated
 - Exclude $\Xi_{\rm b}$ decays as a possible source
- Could it be a reflection of interfering Λ^* 's \rightarrow p K⁻?
 - Proper amplitude analysis absolutely necessary!

Helicity formalism

HC

- Allows for the conventional $\Lambda^* \to pK$ resonances to interfere with pentaquark states $P_c^+ \to J/\psi p$
- Use m(K⁻p) & 5 decay angles as fit parameters. So 6D fit

$$|\mathcal{M}|^{2} = \sum_{\lambda_{\Lambda_{b}^{0}}} \sum_{\lambda_{p}} \sum_{\Delta\lambda_{\mu}} \left| \mathcal{M}_{\lambda_{\Lambda_{b}^{0}},\lambda_{p},\Delta\lambda_{\mu}}^{\Lambda^{*}} + e^{i\,\Delta\lambda_{\mu}\alpha_{\mu}} \sum_{\lambda_{p}^{P_{c}}} d_{\lambda_{p}^{P_{c}},\lambda_{p}}^{\frac{1}{2}}(\theta_{p}) \,\mathcal{M}_{\lambda_{\Lambda_{b}^{0}},\lambda_{p}^{P_{c}},\Delta\lambda_{\mu}}^{P_{c}} \right|$$

<i>LHCb</i>									
тнср	Λ^{\star}	resor	nance moo	del					
$\mathcal{H}^{A \to B C}_{\lambda_B, \lambda_C} =$	$\sum_{L} \sum_{S} \sqrt{\frac{2L+1}{2J_A+1}} B_{L,S} \begin{pmatrix} J_B & J_C & S \\ \lambda_B & -\lambda_C & \lambda_B - \lambda_C \end{pmatrix} \times \begin{pmatrix} L & S & J_A \\ 0 & \lambda_B - 1 & \lambda_C & \lambda_B - \lambda_C \end{pmatrix}$								
Helicity	LS c	couplings	_	-J ^P high-mass states					
couplings	$\ln \Lambda^3$	* decay:	$P_A = P_B P_C \left(-\right.$	$(1)^{L}$	limit <i>L</i> All states, a				
	State	J^P	$M_0 ({\rm MeV})$	$\Gamma_0 ({\rm MeV})$	# Reduced	# Extended			
	$\Lambda(1405)$	$1/2^{-}$	$1405.1^{+1.3}_{-1.0}$	50.5 ± 2.0	3	4			
	$\Lambda(1520)$	$3/2^{-}$	1519.5 ± 1.0	15.6 ± 1.0	5	6			
	A(1600)	$1/2^{+}$	1600	150	3	4			
	A(1670)	$1/2^{-}$	1670	35	3	4			
	A(1690)	$3/2^{-}$	1690	60	5	6			
	A(1800)	$1/2^{-}$	1800	300	4	4			
All known	A(1810)	$1/2^{+}$	1810	150	3	4			
A SIGIES	A(1820)	$5/2^+$	1820	80	1	6			
	A(1830)	$5/2^{-}$	1830	95	1	6			
	A(1890)	$3/2^+$	1890	100	3	6			
	A(2100)	$7/2^{-}$	2100	200	1	6			
	$\Lambda(2110)$	$5/2^+$	2110	200	1	6			
	A(2350)	$9/2^+$	2350	150	0	6			
	$\Lambda(2585)$	$5/2^{-}?$	≈ 2585	200	0	6			
			# of	fit parameter	s: 64	146			

of fit parameters:

9

LHCb PRL 115, 072001 (2015)

Extended model fits with only Λ^*

- Fails to reproduce the $M(J/\psi p)$ peaking structures!
- Other possibilities we have studied:
 - All Σ^{*0} (I=1), isospin violating decay
 - two new Λ^* with free m& Γ
 - 4 non-resonant Λ^* with J^P = 1/2[±] and 3/2[±]

Extended model fits with 1 P_c^+

• Try all J^P up to $7/2^{\pm}$. All don't give good fit

LHCb PRL 115, 072001 (2015)

$2 P_c^+$ fit in reduced model

Best fit has J^P= (3/2⁻ (low), 5/2⁺(high)), also (3/2⁺, 5/2⁻) & (5/2⁺, 3/2⁻) are preferred

LHCb PRL 115, 072001 (2015)

$M(J/\psi p)$ in M(Kp) Slices

Good description of the data in all 6 dimensions!

This interference pattern only for states with opposite parity

Significances and results

- Significance include systematic uncertainty
- Fit improves greatly, for $1 P_c^+ \Delta(-2\ln L)=216=14.7^2$, adding the 2nd P_c^+ improves by 135=11.6²
- Toy MCs used to obtain significances based on $\Delta(-2\ln L)$

	<i>P_c</i> (4380)+	<i>P_c</i> (4450)+
Significance	9σ	12σ
Mass (MeV)	$4380 \pm 8 \pm 29$	$4449.8 \pm 1.7 \pm 2.5$
Width (MeV)	205 ± 18 ± 86	$39 \pm 5 \pm 19$
Fit fraction(%)	$8.4 \pm 0.7 \pm 4.2$	$4.1 \pm 0.5 \pm 1.1$
$\begin{aligned} \boldsymbol{\mathscr{C}}(\Lambda_b^0 \to P_c^+ K^-; \\ P_c^+ \to J/\psi p) \end{aligned}$	$(2.56 \pm 0.22 \pm 1.28^{+0.46}_{-0.36}) \times 10^{-5}$	$(1.25 \pm 0.15 \pm 0.33^{+0.22}_{-0.18}) \times 10^{-5}$

Branching ratio results are submitted to Chin. Phys. C (arXiv:1509.00292) Ref: $\mathscr{C}(B^0 \to Z^-(4430)K^+; Z^- \to J/\psi\pi^-) = (3.4 \pm 0.5^{+0.9}_{-1.9} \pm 0.2) \times 10^{-5}$

Cross-checks

- Two independently coded fitters using different background subtractions (sFit & cFit)
- Split data show consistency 2011/2012, magnet up/down, $\Lambda_b^0/\overline{\Lambda}_b^0$, two Λ_b^0 p_T bins
- Selection varied
 - BDTG>0.5 instead of 0.9 (default)
 - B⁰ and B_s reflections modelled in the fit instead of veto

Breit-Wigner amplitude

• Often a relativistic Breig-Wigner function is used to model resonance

HCh

 q is daughter momentum in the resonance rest frame

$$BW(m|M_0, \Gamma_0) = \frac{1}{M_0^2 - m^2 - iM_0\Gamma(m)}$$
$$\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2L+1} \frac{M_0}{m} B'_L(q, q_0, d)^2$$

Blatt-Weisskopf function for orbital angular momentum (*L*) barrier factors

- Circular trajectory in
 complex plane is characteristic of resonance
- Circle can be rotated by arbitrary phase
- Phase change of 180° across the pole

- Good evidence for the resonant character of P_c(4450)⁺
- The errors for $P_c(4380)^+$ are too large to be conclusive

Different types of tetra- and penta-quarks

• Crucial for understanding QCD & points to other states.

lhcd

+ kinematic effects

Conclusions

- LHCb has found two pentaquark candidates decaying to J/ψp with overwhelming significance in a state of the art amplitude analysis: they will not go away!
- The preferred J^P are of opposite parity, with one state having J=3/2 and the other 5/2
- Both the P_c⁺ and Z_(c)⁺ states contain cc̄, strong binding due to this?
- Determination their internal binding mechanism will require more study
- We look forward to establishing the structure of many other states or other decay modes

Backup

sFit

- Signal PDF $\mathcal{P}_{sig}(m_{Kp}, \Omega | \vec{\omega}) = \frac{1}{I(\vec{\omega})} |\mathcal{M}(m_{Kp}, \Omega | \vec{\omega})|^2 \Phi(m_{Kp}) \epsilon(m_{Kp}, \Omega)$
 - $\vec{\omega}$: fitting parameters
 - Φ : phase-space = pq
 - ϵ : efficiency
- sFit minimizes

$$I(\overrightarrow{\omega}) \propto \sum_{j}^{N_{\rm MC}} w_j^{\rm MC} |\mathcal{M}(m_{Kpj}, \Omega_j | \overrightarrow{\omega})|^2$$

- Normalization calculated using simulated PHSP MC ($\Phi\epsilon$ included)
- w^{MC} discuss later

$$-2\ln\mathcal{L}(\overrightarrow{\omega}) = -2s_W \sum_i W_i \ln \mathcal{P}_{sig}(m_{Kp\ i}, \Omega_i | \overrightarrow{\omega})$$
$$= -2s_W \sum_i W_i \ln |\mathcal{M}(m_{Kp\ i}, \Omega_i | \overrightarrow{\omega})|^2 + 2s_W \ln I(\overrightarrow{\omega}) \sum_i W_i$$
$$-2s_W \sum_i W_i \ln[\Phi(m_{Kp\ i})\epsilon(m_{Kp\ i}, \Omega_i)].$$

 W_i is sWeighs from m(J/ ψ Kp) fits $s_W = \Sigma_i W_i / \Sigma_i W_i^2$ constant factor to correct uncertainty

Constant (invariant of $\vec{\omega}$), is dropped No need to know $\Phi \varepsilon$ paramerizaiton

cFit

- cFit uses events in $\pm 2\sigma$ window (σ =7.52MeV)
- Total PDF $\mathcal{P}(m_{Kp}, \Omega | \vec{\omega}) = (1 \beta) \mathcal{P}_{sig}(m_{Kp}, \Omega | \vec{\omega}) + \beta \mathcal{P}_{bkg}(m_{Kp}, \Omega)$
- Background is described by sidebands 5σ -13.5 σ
- cFit minimizes

Background fraction β =5.4%

$$-\ln \mathcal{L}(\overrightarrow{\omega}) = \sum_{i} \ln \left[|\mathcal{M}(m_{Kp\ i}, \Omega_{i} | \overrightarrow{\omega})|^{2} + \frac{\beta I(\overrightarrow{\omega})}{(1-\beta)I_{\text{bkg}}} \frac{\mathcal{P}_{\text{bkg}}^{u}(m_{Kp\ i}, \Omega_{i})}{\Phi(m_{Kp\ i})\epsilon(m_{Kp\ i}, \Omega_{i})} \right] + N \ln I(\overrightarrow{\omega}) + \text{constant},$$

$$I_{\rm bkg} \propto \sum_{j} w_{j}^{\rm MC} \frac{\mathcal{P}_{\rm bkg}^{u}(m_{Kp\ j},\Omega_{j})}{\Phi(m_{Kp\ i})\epsilon(m_{Kp\ j},\Omega_{j})}$$

Signal efficiency parameterization becomes part of background parameterization, effects only a tiny part of total PDF because of small β cFit efficiency and background parameterizations

• Both use similar ways

lhcd

 $\epsilon(m_{Kp},\Omega) = \epsilon_1(m_{Kp},\cos\theta_\Lambda) \cdot \epsilon_2(\cos\theta_{\Lambda_b^0}|m_{Kp}) \cdot \epsilon_3(\cos\theta_{J/\psi}|m_{Kp}) \cdot \epsilon_4(\phi_K|m_{Kp}) \cdot \epsilon_5(\phi_\mu|m_{Kp})$

$$\frac{\mathcal{P}_{bkg}^{u}(m_{Kp},\Omega)}{\Phi(m_{Kp})} = P_{bkg_{1}}(m_{Kp},\cos\theta_{\Lambda}) \cdot P_{bkg_{2}}(\cos\theta_{\Lambda_{b}^{0}}|m_{Kp})$$
$$\cdot P_{bkg_{3}}(\cos\theta_{J/\psi}|m_{Kp}) \cdot P_{bkg_{4}}(\phi_{K}|m_{Kp}) \cdot P_{bkg_{5}}(\phi_{\mu}|m_{Kp}).$$

• The matrix element for the Λ^* decay is:

LHCb

$$\begin{split} \mathcal{M}_{\lambda_{A_{b}^{0}},\lambda_{p},\Delta\lambda_{\mu}}^{A^{*}} &\equiv \sum_{n} \sum_{\lambda_{A^{*}}} \sum_{\lambda_{\psi}} \mathcal{H}_{\lambda_{A^{*}},\lambda_{\psi}}^{A^{0}_{b} \to A^{*}_{n}\psi} D_{\lambda_{A_{b}^{0}},\lambda_{A^{*}}-\lambda_{\psi}}^{\frac{1}{2}} (0,\theta_{A_{b}^{0}},0)^{*} \\ & \mathcal{H}_{\lambda_{p},0}^{A^{*}_{n} \to Kp} D_{\lambda_{A^{*}},\lambda_{p}}^{J_{A^{*}_{n}}} (\phi_{K},\theta_{A^{*}},0)^{*} R_{n}(m_{Kp}) D_{\lambda_{\psi},\Delta\lambda_{\mu}}^{1} (\phi_{\mu},\theta_{\psi},0)^{*} \\ & \bullet \text{ And for the } P_{c} : \end{split}$$

$$\mathcal{M}_{\lambda_{A_{b}^{0}},\lambda_{p}^{P_{c}},\Delta\lambda_{\mu}^{P_{c}}}^{P_{c}} \equiv \sum_{j} \sum_{\lambda_{P_{c}}} \sum_{\lambda_{P_{c}}} \mathcal{H}_{\lambda_{P_{c}},0}^{\Lambda_{b}^{0}\to P_{cj}K} D_{\lambda_{A_{b}^{0}},\lambda_{P_{c}}}^{\frac{1}{2}} (\phi_{P_{c}},\theta_{A_{b}^{0}}^{P_{c}},0)^{*}$$
$$\mathcal{H}_{\lambda_{p}^{P_{c}},\lambda_{\psi}^{P_{c}}}^{P_{cj}\to\psi p} D_{\lambda_{P_{c}},\lambda_{\psi}^{P_{c}}-\lambda_{p}^{P_{c}}}^{J_{P_{cj}}} (\phi_{\psi},\theta_{P_{c}},0)^{*} R_{j}(m_{\psi p}) D_{\lambda_{\psi}^{P_{c}},\Delta\lambda_{\mu}^{P_{c}}}^{1} (\phi_{\mu}^{P_{c}},\theta_{\psi}^{P_{c}},0)^{*}$$

• The matrix element for the Λ^* decay is:

$$\mathcal{M}_{\lambda_{A_{b}^{0}},\lambda_{p},\Delta\lambda_{\mu}}^{A^{*}} \equiv \sum_{n} \sum_{\lambda_{A^{*}}} \sum_{\lambda_{\psi}} \mathcal{H}_{\lambda_{A^{*}},\lambda_{\psi}}^{A^{0}_{b}\to A^{*}_{n}\psi} D_{\lambda_{A_{b}^{0}},\lambda_{A^{*}}-\lambda_{\psi}}^{\frac{1}{2}} (0,\theta_{A_{b}^{0}},0)^{*} \mathcal{H}_{\lambda_{p},0}^{A^{*}_{n}\to Kp} D_{\lambda_{A^{*}},\lambda_{\psi}}^{J_{A^{*}_{n}}} (\phi_{K},\theta_{A^{*}},0)^{*} \mathcal{R}_{n}(m_{Kp}) D_{\lambda_{\psi},\Delta\lambda_{\mu}}^{1} (\phi_{\mu},\theta_{\psi},0)^{*}$$

• And for the P_c :

HC

$$\mathcal{M}_{\lambda_{A_{b}^{0}},\lambda_{p}^{P_{c}},\Delta\lambda_{\mu}^{P_{c}}}^{P_{c}} \equiv \sum_{j} \sum_{\lambda_{P_{c}}} \sum_{\lambda_{\psi}^{P_{c}}} \mathcal{H}_{\lambda_{P_{c}},0}^{A_{b}^{0}\to P_{cj}K} D_{\lambda_{A_{b}^{0}},\lambda_{P_{c}}}^{\frac{1}{2}} (\phi_{P_{c}},\theta_{A_{b}^{0}}^{P_{c}},0)^{*}$$
$$\mathcal{H}_{\lambda_{\psi}^{P_{c}},\lambda_{p}^{P_{c}}}^{P_{cj}\to\psi p} D_{\lambda_{P_{c}},\lambda_{\psi}^{P_{c}}-\lambda_{p}^{P_{c}}}^{J_{P_{cj}}} (\phi_{\psi},\theta_{P_{c}},0)^{*} R_{j}(m_{\psi p}) D_{\lambda_{\psi}^{P_{c}},\Delta\lambda_{\mu}^{P_{c}}}^{1} (\phi_{\mu}^{P_{c}},\theta_{\psi}^{P_{c}},0)^{*}$$

• R(m) are resonance parametrizations, generally are described by Breit-Wigner amplitude

• The matrix element for the Λ^* decay is:

LHCb

$$\begin{split} \mathcal{M}_{\lambda_{A_{b}^{0}},\lambda_{p},\Delta\lambda_{\mu}}^{A^{*}} &\equiv \sum_{n} \sum_{\lambda_{A^{*}}} \sum_{\lambda_{\psi}} \mathcal{H}_{\lambda_{A^{*}},\lambda_{\psi}}^{A^{0}_{b} \to A^{*}_{n}\psi} D_{\lambda_{A_{b}^{0}},\lambda_{A^{*}}-\lambda_{\psi}}^{\frac{1}{2}} (0,\theta_{A_{b}^{0}},0)^{*} \\ &\qquad \mathcal{H}_{\lambda_{p},0}^{A^{*}_{n} \to Kp} D_{\lambda_{A^{*}},\lambda_{p}}^{J_{A^{*}_{n}}} (\phi_{K},\theta_{A^{*}},0)^{*} R_{n}(m_{Kp}) D_{\lambda_{\psi},\Delta\lambda_{\mu}}^{1} (\phi_{\mu},\theta_{\psi},0)^{*} \\ &\qquad \bullet \text{ And for the } P_{c} : \end{split}$$

$$\mathcal{M}_{\lambda_{A_{b}^{0}},\lambda_{p}^{P_{c}},\Delta\lambda_{\mu}^{P_{c}}}^{P_{c}} \equiv \sum_{j} \sum_{\lambda_{P_{c}}} \sum_{\lambda_{P_{c}}} \mathcal{M}_{\lambda_{\psi}^{P_{c}},0}^{\Lambda_{b}^{0}\to P_{cj}K} D_{\lambda_{A_{b}^{0}},\lambda_{P_{c}}}^{\frac{1}{2}} (\phi_{P_{c}},\theta_{A_{b}^{0}}^{P_{c}},0)^{*}$$
$$\mathcal{M}_{\lambda_{P_{c}},\lambda_{\psi}^{P_{c}}}^{P_{cj}\to\psi p} D_{\lambda_{P_{c}},\lambda_{\psi}^{P_{c}}-\lambda_{p}^{P_{c}}}^{J_{P_{cj}}} (\phi_{\psi},\theta_{P_{c}},0)^{*} R_{j}(m_{\psi p}) D_{\lambda_{\psi}^{P_{c}},\Delta\lambda_{\mu}^{P_{c}}}^{1} (\phi_{\mu}^{P_{c}},\theta_{\psi}^{P_{c}},0)^{*}$$

 $\bullet \ensuremath{\mathcal{H}}$ are complex helicity couplings determined from the fit

• The matrix element for the Λ^* decay is:

$$\mathcal{M}_{\lambda_{A_{b}^{0}},\lambda_{p},\Delta\lambda_{\mu}}^{A^{*}} \equiv \sum_{n} \sum_{\lambda_{A^{*}}} \sum_{\lambda_{\psi}} \mathcal{H}_{\lambda_{A^{*}},\lambda_{\psi}}^{A^{0}_{b} \to A^{*}_{n}\psi} D_{\lambda_{b}^{0},\lambda_{A^{*}}-\lambda_{\psi}}^{\frac{1}{2}} (0,\theta_{A_{b}^{0}},0)^{*} \mathcal{H}_{\lambda_{p},0}^{A^{*}_{n} \to Kp} D_{\lambda_{A^{*}},\lambda_{p}}^{A^{*}_{n},\lambda_{\psi}} (\phi_{K},\theta_{A^{*}},0)^{*} R_{n}(m_{Kp}) D_{\lambda_{\psi},\Delta\lambda_{\mu}}^{1} (\phi_{\mu},\theta_{\psi},0)^{*}$$

• And for the P_c :

HCL

$$\mathcal{M}_{\lambda_{A_{b}^{0}},\lambda_{p}^{P_{c}},\Delta\lambda_{\mu}^{P_{c}}}^{P_{c}} \equiv \sum_{j} \sum_{\lambda_{P_{c}}} \sum_{\lambda_{\psi}} \mathcal{H}_{\lambda_{P_{c}},0}^{\Lambda_{b}^{0}\to P_{cj}K} D_{\lambda_{A_{b}^{0}},\lambda_{P_{c}}}^{\frac{1}{2}} (\phi_{P_{c}},\theta_{A_{b}^{0}}^{P_{c}},0)^{*} \\ \mathcal{H}_{\lambda_{\psi}^{P_{c}},\lambda_{\psi}^{P_{c}}}^{P_{cj}\to\psi p} D_{\lambda_{P_{c}},\lambda_{\psi}^{P_{c}}-\lambda_{p}^{P_{c}}}^{J_{P_{cj}}} (\phi_{\psi},\theta_{P_{c}},0)^{*} R_{j}(m_{\psi p}) D_{\lambda_{\psi}^{P_{c}},\Delta\lambda_{\mu}^{P_{c}}}^{1} (\phi_{\mu}^{P_{c}},\theta_{\psi}^{P_{c}},0)^{*}$$

 Wigner D-matrix arguments are Euler angles corresponding to the fitted angles.

• They are added together as:

HC

$$|\mathcal{M}|^{2} = \sum_{\lambda_{A_{b}^{0}}} \sum_{\lambda_{p}} \sum_{\Delta\lambda_{\mu}} \left| \mathcal{M}_{\lambda_{A_{b}^{0}},\lambda_{p},\Delta\lambda_{\mu}}^{A^{*}} + e^{i\,\Delta\lambda_{\mu}\alpha_{\mu}} \sum_{\lambda_{p}^{P_{c}}} d_{\lambda_{p}^{P_{c}},\lambda_{p}}^{\frac{1}{2}} \left(\theta_{p}\right) \mathcal{M}_{\lambda_{A_{b}^{0}},\lambda_{p}^{P_{c}},\Delta\lambda_{\mu}}^{P_{c}} \right|$$

- α_{μ} and θ_{p} are rotation angles to align the final state helicity axes of the μ and p, as helicity frames used are different for the two decay chains.
- Helicity couplings $\mathcal{H} \Rightarrow LS$ amplitudes *B* via:

$$\mathcal{H}_{\lambda_B,\lambda_C}^{A\to BC} = \sum_L \sum_S \sqrt{\frac{2L+1}{2J_A+1}} B_{L,S} \begin{pmatrix} J_B & J_C & S \\ \lambda_B & -\lambda_C & \lambda_B - \lambda_C \end{pmatrix} \times \begin{pmatrix} L & S & J_A \\ 0 & \lambda_B - \lambda_C & \lambda_B - \lambda_C \end{pmatrix}$$

- Convenient way to enforce parity conservation in the strong decays via: $P_A = P_B P_C (-1)^L$

 $\mathbf{2}$

LHCb detector

Impact parameter: Proper time: Momentum: Mass : RICH $K - \pi$ separation: Muon ID: ECAL:

HCh

$$\begin{split} \sigma_{IP} &= 20 \ \mu\text{m} \\ \sigma_{\tau} &= 45 \ \text{fs for } B_s^0 \rightarrow J/\psi\phi \ \text{or } D_s^+\pi^- \\ \Delta p/p &= 0.4 \sim 0.6\% \ (5 - 100 \ \text{GeV}/c) \\ \sigma_m &= 8 \ \text{MeV}/c^2 \ \text{for } B \rightarrow J/\psi X \ (\text{constrainted } \text{m}_{J/\psi}) \\ \epsilon(K \rightarrow K) \sim 95\% \ \text{mis-ID} \ \epsilon(\pi \rightarrow K) \sim 5\% \\ \epsilon(\mu \rightarrow \mu) \sim 97\% \ \text{mis-ID} \ \epsilon(\pi \rightarrow \mu) \sim 1 - 3\% \\ \Delta E/E &= 1 \oplus 10\%/\sqrt{E(\text{GeV})} \end{split}$$

Extended model fits with 2 P_c^+

- Leads to a good fit
- The second broad P_c^+ is visible in other projections (shown later)
- It also modifies the narrow P_c^+ 's decay angular distribution via interference to match with the data distribution

Source	$M_0 ({\rm MeV}) \Gamma_0 ({\rm MeV})$			Fit fractions (%)				
	low	high	low	high	low	high	$\Lambda(1405)$	$\Lambda(1520)$
Extended vs. reduced	21	0.2	54	10	3.14	0.32	1.37	0.15
Λ^* masses & widths	7	0.7	20	4	0.58	0.37	2.49	2.45
Proton ID	2	0.3	1	2	0.27	0.14	0.20	0.05
$10 < p_p < 100 {\rm GeV}$	0	1.2	1	1	0.09	0.03	0.31	0.01
Nonresonant	3	0.3	34	2	2.35	0.13	3.28	0.39
Separate sidebands	0	0	5	0	0.24	0.14	0.02	0.03
J^P (3/2 ⁺ , 5/2 ⁻) or (5/2 ⁺ , 3/2 ⁻)	10	1.2	34	10	0.76	0.44		
$d = 1.5 - 4.5 \text{ GeV}^{-1}$	9	0.6	19	3	0.29	0.42	0.36	1.91
$L^{P_c}_{\Lambda^0_b} \Lambda^0_b \to P^+_c \ (\text{low/high}) K^-$	6	0.7	4	8	0.37	0.16		
$L_{P_c} P_c^+ (\text{low/high}) \to J/\psi p$	4	0.4	31	$\overline{7}$	0.63	0.37		
$L^{\Lambda^*_n}_{\Lambda^0_b} \Lambda^0_b \to J/\psi \Lambda^*$	11	0.3	20	2	0.81	0.53	3.34	2.31
Efficiencies	1	0.4	4	0	0.13	0.02	0.26	0.23
Change $\Lambda(1405)$ coupling	0	0	0	0	0	0	1.90	0
Overall	29	2.5	86	19	4.21	1.05	5.82	3.89
sFit/cFit cross check	5	1.0	11	3	0.46	0.01	0.45	0.13

 Λ^{*} modelling contributes the largest

Source	$M_0 ({\rm MeV}) \Gamma_0 ({\rm MeV})$				Fit fractions (%)			
	low	high	low	high	low	high	$\Lambda(1405)$	$\Lambda(1520)$
Extended vs. reduced	21	0.2	54	10	3.14	0.32	1.37	0.15
Λ^* masses & widths	7	0.7	20	4	0.58	0.37	2.49	2.45
Proton ID	2	0.3	1	2	0.27	0.14	0.20	0.05
$10 < p_p < 100 \text{ GeV}$	0	1.2	1	1	0.09	0.03	0.31	0.01
Nonresonant	3	0.3	34	2	2.35	0.13	3.28	0.39
Separate sidebands	0	0	5	0	0.24	0.14	0.02	0.03
$J^P(3/2^+, 5/2^-)$ or $(5/2^+, 3/2^-)$	10	1.2	34	10	0.76	0.44		
$d = 1.5 - 4.5 \text{ GeV}^{-1}$	9	0.6	19	3	0.29	0.42	0.36	1.91
$L^{P_c}_{\Lambda^0_b} \Lambda^0_b \to P^+_c \ (\text{low/high}) K^-$	6	0.7	4	8	0.37	0.16		
$L_{P_c}^{o} P_c^+ (\text{low/high}) \to J/\psi p$	4	0.4	31	7	0.63	0.37		
$L^{A^*_n}_{\Lambda^0_b} \Lambda^0_b \to J/\psi \Lambda^*$	11	0.3	20	2	0.81	0.53	3.34	2.31
Efficiencies	1	0.4	4	0	0.13	0.02	0.26	0.23
Change $\Lambda(1405)$ coupling	0	0	0	0	0	0	1.90	0
Overall	29	2.5	86	19	4.21	1.05	5.82	3.89
sFit/cFit cross check	5	1.0	11	3	0.46	0.01	0.45	0.13

Alternate J^P fits give sizeable uncertainty

Source	M_0 (MeV) Γ_0 (MeV			MeV)		Fit fractions (%)		
	low	high	low	high	low	high	$\Lambda(1405)$	A(1520)
Extended vs. reduced	21	0.2	54	10	3.14	0.32	1.37	0.15
Λ^* masses & widths	7	0.7	20	4	0.58	0.37	2.49	2.45
Proton ID	2	0.3	1	2	0.27	0.14	0.20	0.05
$10 < p_p < 100 \text{ GeV}$	0	1.2	1	1	0.09	0.03	0.31	0.01
Nonresonant	3	0.3	34	2	2.35	0.13	3.28	0.39
Separate sidebands	0	0	5	0	0.24	0.14	0.02	0.03
$J^P(3/2^+, 5/2^-)$ or $(5/2^+, 3/2^-)$	10	1.2	34	10	0.76	0.44		
$d = 1.5 - 4.5 \text{ GeV}^{-1}$	9	0.6	19	3	0.29	0.42	0.36	1.91
$L^{P_c}_{\Lambda^0_b} \Lambda^0_b \to P^+_c \ (\text{low/high}) K^-$	6	0.7	4	8	0.37	0.16		
$L_{P_c} P_c^+ (\text{low/high}) \to J/\psi p$	4	0.4	31	7	0.63	0.37		
$L^{\Lambda^*_n}_{\Lambda^0_L} \Lambda^0_b \to J/\psi \Lambda^*$	11	0.3	20	2	0.81	0.53	3.34	2.31
Efficiencies	1	0.4	4	0	0.13	0.02	0.26	0.23
Change $\Lambda(1405)$ coupling	0	0	0	0	0	0	1.90	0
Overall	29	2.5	86	19	4.21	1.05	5.82	3.89
sFit/cFit cross check	5	1.0	11	3	0.46	0.01	0.45	0.13

Varying choices in mass depend function also give sizeable uncertainty

Source	$M_0 ({\rm MeV}) \Gamma_0 ({\rm MeV})$				Fit fractions (%)			
	low	high	low	high	low	high	$\Lambda(1405)$	$\Lambda(1520)$
Extended vs. reduced	21	0.2	54	10	3.14	0.32	1.37	0.15
Λ^* masses & widths	7	0.7	20	4	0.58	0.37	2.49	2.45
Proton ID	2	0.3	1	2	0.27	0.14	0.20	0.05
$10 < p_p < 100 \text{ GeV}$	0	1.2	1	1	0.09	0.03	0.31	0.01
Nonresonant	3	0.3	34	2	2.35	0.13	3.28	0.39
Separate sidebands	0	0	5	0	0.24	0.14	0.02	0.03
$J^P (3/2^+, 5/2^-)$ or $(5/2^+, 3/2^-)$	10	1.2	34	10	0.76	0.44		
$d = 1.5 - 4.5 \text{ GeV}^{-1}$	9	0.6	19	3	0.29	0.42	0.36	1.91
$L^{P_c}_{\Lambda^0_b} \Lambda^0_b \to P^+_c \ (\text{low/high}) K^-$	6	0.7	4	8	0.37	0.16		
$L_{P_c}^{o} P_c^+ (\text{low/high}) \to J/\psi p$	4	0.4	31	7	0.63	0.37		
$L^{\Lambda^*_n}_{\Lambda^0_b} \Lambda^0_b \to J/\psi \Lambda^*$	11	0.3	20	2	0.81	0.53	3.34	2.31
Efficiencies	1	0.4	4	0	0.13	0.02	0.26	0.23
Change $\Lambda(1405)$ coupling	0	0	0	0	0	0	1.90	0
Overall	29	2.5	86	19	4.21	1.05	5.82	3.89
sFit/cFit cross check	5	1.0	11	3	0.46	0.01	0.45	0.13

sFit/cFit give consistent results

LHCb detector at LHC

 Advantages over e⁺e⁻ B-factories:

LHCb

- ~1000x larger b production rate
- produce bbaryons at the same time as Bmesons
- long visible lifetime of b-hadrons (no backgrounds from the other b-hadron)
- Advantages over GPDs:
 - RICH detectors for π/K/p discrimination (smaller backgrounds)
 - Small event size allows large trigger bandwidth (up to 5 kHz in Run I); all devoted to flavor physics

Different types of tetra- and penta-quarks

LHCD

G

- No convincing states 50 years after Gell-mann paper proposing qqqqq states
- Previous "observations" of several pentaquark states have been refuted
- These included

HC

- $\Theta^+ \rightarrow K^0 p$, K⁺n, mass=1.54 GeV, Γ ~10 MeV
- Resonance in D^{*–}p at 3.10 GeV, Γ =12 MeV

- Ξ⁻→Ξ⁻π⁻, mass=1.862 GeV, Γ<18 MeV

 Generally they were found/debunked by looking for "bumps" in mass spectra circa 2004

See summary by [K. H. Hicks, Eur. Phys. J. H37 (2012) 1]