Study of interference effects in the decays of ψ mesons in K+K-

A. Lusiani (Scuola Normale Superiore and INFN, Pisa) V. P. Druzhinin (Novosibirsk State University)

for the BABAR Collaboration

ABSTRACT: Using the ISR technique with an undetected photon, the $e^+e^- \rightarrow K^+K^-$ cross section and the charged kaon electromagnetic form factor have been measured in the energy region 2.6-7.5 GeV in the BABAR experiment. The BABAR measurements together with data from other experiments are used to perform a modelindependent determination of the relative phases between single-photon and three-gluon amplitudes in J/ ψ and $\psi(2S) \rightarrow KK$ decays. The values of the branching fractions measured in the $e^+e^- \rightarrow K^+K^-$ reaction are shifted due to interference of resonant and nonresonant amplitudes. We have determined the absolute values of the shifts to be 5% for J/ ψ and 15% for $\psi(2S)$ decay. The interference patterns near the $\psi(3770)$ and $\psi(4160)$ resonances have been also studied. For the $\psi(3770)$ the resonant cross section is determined to be $\sigma(e^+e^- \rightarrow \psi(3770) \rightarrow K^+K^-) = 0.073^{+0.061} + 0.073^{+0.061}$ $\psi(4160) \rightarrow K^+K^-) < 0.062 \text{ pb is set at } 90\% \text{ CL.}$

I. Measurement of the $e^+e^- \rightarrow$ K⁺K⁻ cross section at BABAR

The BABAR detector collected data at center-of-mass energy of 10.6 GeV. The initial-state-radiation (ISR) technique is used to measure exclusive hadronic cross section at lower energies. The mass spectrum of the K+K⁻ system produced in the reaction $e^+e^- \rightarrow K^+K^-\gamma$ is related to the cross section for the nonradiative process $e^+e^- \rightarrow K^+K^-$.

IV. Effect of interference

VII. $\psi(3770)$ decays to light hadrons

The $\psi(3770)$ meson is the lowest-mass $c\overline{c}$ state above open-charm threshold. It is expected to decay predominantly to \overline{DD} pairs. Assuming that \overline{cc} annihilation into light hadrons is proportional to $|\Psi(0)|^2$ we estimate

$$B(\psi(3770) \to f) \approx B(\psi(2S) \to f) \frac{B(\psi(3770) \to e^+e^-)}{B(\psi(2S) \to e^+e^-)}$$

$$\approx 10^{-3} B(\psi(2S) \to f)$$
(1)

About 90 light-hadron final states were studied, but only two decays, to $\phi\eta[8]$ and pp[9], were observed. The measured branching fractions are significantly exceed the above prediction. The mechanism explaining relatively large values of branching fractions is production of light hadrons via intermediate DD loops [10,11]. The predicted $B(\psi(3770) \rightarrow \psi(3770))$ $K^{+}K^{-}$ =9×10⁻⁵ [10] is larger than the above prediction by about three orders of magnitude. The branching fraction for the single-photon mechanism of this decay is calculated to be about 5×10^{-9} and negligible.

The radiator function W(s,x) is calculated in QED with a high accuracy (better than 0.5%).

The produced hadron system is boosted against the ISR photon. Due to limited detector

acceptance the mass region below 2.5 GeV can be studied only with detected photon. Above 3 GeV statistics may

Asy (NLO)

Asy (LO)

Preliminary

Preliminary

3.65

2.5

Preliminary

J/ψ

 462 ± 28

events

3.15

 $M_{K^{+}K^{-}}$ (GeV/c²)

ψ(2S)

 66 ± 13

events

7 3.75 $M_{K^{+}K^{-}} (GeV/c^{2})$

be significantly increased with use of small-angle ISR.

 $M_{K^+K^-}$ (GeV/c²) The measured continuum cross section may be used to calculate electromagnetic (single-photon) contribution to $\psi \rightarrow K^+K^-$ decay and effect of interference between resonant and nonresonant $e^+e^- \rightarrow K^+K^-$ amplitudes.

For narrow resonances the interference term proportional to (m^2-E^2) integrates to zero due to the beam energy spread in direct e⁺e⁻ experiments and detector resolution in ISR measurements. The remaining interference term has a Breit-Wigner shape and causes a shift of the measured $B(\psi \rightarrow K^+K^-)$ relative to its true value by

The values of the branching fraction for $J/\psi \rightarrow K^+K^ \delta B = 2 \int \frac{\sigma_0}{M_s} \sin \phi$ measured in the reaction $e^+e^- \rightarrow K^+K^-$ and in the decay ψ (2S) $\rightarrow \pi\pi J/\psi \rightarrow \pi\pi K^{+}K^{-}$ differ by δB .

V. Relative phases and interference shifts

For the J/ ψ we perform calculations for two values of $B(J/\psi \rightarrow K_{S}K_{I})$, (2.62 ±0.21)×10⁻⁴ [4] and (1.82 ±0.14)×10⁻⁴ [7], and two signs of $sin\phi$.

$J/\psi \to K_S K_L$	arphi	$\varphi(\kappa = 0)$	$\delta \mathcal{B}(J/\psi \to K^+K^-) \times 10^4$
BES $[28]$	$(96 \pm 6)^{\circ}$	$(97 \pm 4)^{\circ}$	0.13 ± 0.01
	$-(96 \pm 5)^{\circ}$	$-(95 \pm 4)^{\circ}$	-0.13 ± 0.01
NU [20]	$(111 \pm 5)^{\circ}$	$(108 \pm 4)^{\circ}$	0.15 ± 0.01
	$-(109\pm5)^{\circ}$	$-(106 \pm 4)^{\circ}$	-0.15 ± 0.01

For J/ ψ , we confirm the results of the previous works [4,5,6] that the strong amplitude for the $\psi \rightarrow K^+K^-$ decay has a large imaginary part.

The ϕ and δB values depend weakly on $\kappa = (A \gamma^{KSKL} / A \gamma^{K+K-})$.

arphi	$\varphi(\kappa = 0)$	$\delta \mathcal{B}(\psi(2S) \to K^+K^-) \times 10^4$
$(81 \pm 13)^{\circ}$	$(91 \pm 10)^{\circ}$	0.11 ± 0.01
$(56 \pm 15)^{\circ}$	$(55 \pm 12)^{\circ}$	0.10 ± 0.01

VIII. Interference pattern near the $\psi(3770)$ resonance

With $B(\psi(3770) \rightarrow K^+K^-) \sim 10^{-4}$ [10] the decay reveals itself as an interference pattern in the energy dependence of the $e^+e^- \rightarrow K^+K^-$ cross section near the $\psi(3770)$ resonance.

$$\sigma_{K^+K^-}(E) = \left| \sqrt{\sigma_{\text{cont}}} - \sqrt{\sigma_{\psi}} e^{i\phi} \right|^2 \frac{m_{\psi}\Gamma_{\psi}}{D} \right|^2 = \sigma_{\text{cont}} + \left(\sigma_{\psi} + 2\sqrt{\sigma_{\text{cont}}\sigma_{\psi}}\sin\phi\right) \frac{m_{\psi}^2\Gamma_{\psi}^2}{|D|^2} - 2\sqrt{\sigma_{\text{cont}}\sigma_{\psi}}\cos\phi \frac{m_{\psi}\Gamma_{\psi}(m_{\psi}^2 - E^2)}{|D|^2},$$

where $\sigma_{\psi} \equiv \sigma_{\psi(3770)}$ is the cross section for the $\sigma_{\rm cont}(E) = \frac{\pi \alpha^2 \beta^3}{3E^2} |F_K(E)|^2,$ process $e^+e^- \rightarrow \psi(3770) \rightarrow \psi(3770)$ K⁺K[−] in the resonance maximum, and $D = m_{w}^{2} - E^{2} - im_{w}\Gamma_{w}$

II. J/ ψ and $\psi(2S)$ decays

There is also the measurement [4], in which J/ ψ 's were produced in the $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$ decay: $B(J/\psi \rightarrow K^+K^-) = (2.86 \pm 0.21) \times 10^{-4}$

 $-(55 \pm 13)$ -0.10 ± 0.01 $-(30 \pm 10)^{\circ}$

For $\psi(2S)$, the result on the relative phase strongly depends on the sign of $sin\phi$.

VI. Corrected branching fraction for J/ψ and $\psi(2S) \rightarrow K^+K^-$

BABAR results for two signs of sin ϕ :

 $\mathcal{B}(J/\psi \to K^+K^-) = (3.22 \pm 0.20 \pm 0.12) \times 10^{-4}, \sin \varphi > 0,$ $(3.50 \pm 0.20 \pm 0.12) \times 10^{-4}, \sin \varphi < 0,$

For J/ ψ the sin ϕ sign can be chosen from comparison of the branching fractions measured in the $e^+e^- \rightarrow K^+K^-$ reaction and $\psi(2S) \rightarrow J\psi\pi^+\pi^-$ decay. Comparison our data with the measurement of Ref.[4] (2.86 \pm 0.21) \times 10⁻⁴ gives an indication that the sign is positive.

$$\mathcal{B}(\psi(2S) \to K^+ K^-) = (0.62 \pm 0.15 \pm 0.02) \times 10^{-4}, \sin \varphi > 0$$
$$(0.83 \pm 0.15 \pm 0.02) \times 10^{-4}, \sin \varphi > 0$$

For $\psi(2S)$ a theoretical argument can be used. The ratio of the $|A_s|^2$ for $\psi(2S)$ and J/ ψ decay is 0.192 ±0.026 for the negative sign and 0.170 \pm 0.23 for the positive. The latter value is closer to the expectation that this ratio is approximately equal to the ratio $B(\psi(2S) \rightarrow e^+e^-) / B(J\psi \rightarrow e^+e^-) = 0.131.$

References: [1] BABAR (LA ISR): J.P. Lees et al. (BABAR), Phys. Rev. D 88 032013 (2013).

 $|F_K(E)| =$

The fit yields two solutions for $\sigma_{w(3770)}$ and ϕ with statistical significance of 3.2σ . They corresponds to branching fractions of about 10⁻⁴ and 10⁻³.

IX. Constraints from $e^+e^- \rightarrow K_S K_L$

Since the single-photon contribution is small, $B(\psi(3770) \rightarrow \psi(3770))$ $K_S K_L$) = B(ψ (3770) \rightarrow K⁺K⁻), but the nonresonant e⁺e⁻ \rightarrow K_SK_L cross section is significantly, at least by an order of magnitude, lower than that for K+K-. The interference pictures are strongly different for $K_s K_1$ and K^+K^- . The data $\sigma(e^+e^- \rightarrow K_s K_L)(m_w) < 0.07$ pb at 90% CL [12] and $\sigma_{cont}(K_{s}K_{L}) / \sigma_{cont}(K^{+}K^{-}) = 0.030 \pm 0.015 \text{ at } E = m_{\psi} [13,14,15]$ are added to the fit.

In previous analyses [4,5,6] the single-photon $K_s K_l$ amplitude was assumed to be zero, while the single photon K+K⁻ amplitude was assumed to be equal to the same amplitude for $\pi^+\pi^-$, which is determined from the $\psi \rightarrow \pi^+\pi^-$ decay.

We perform a model-independent determination of the phase: \checkmark A, 's are calculated from the measured values of kaon form factors.

 \checkmark From data we estimate that the ratio of the neutral and charged form factors (κ) is equal to 0.2±0.1 at J/ ψ and 0.15 ± 0.07 at $\psi(2S)$.

[2] CLEO: T.K. Pedlar et al. (CLEO), Phys. Rev. Lett. **95**, 261803 (2005). [3] Seth et al.: K.K. Seth et al., Phys. Rev. Lett. 110, 022002 (2013). [4] Z. Metreveli *et al.*, Phys. Rev. D **85**, 092007 (2012). [5] M. Suzuki, Phys. Rev. D 60, 051501R (1999). [6] J.L. Rosner, Phys. Rev. D 60, 074029 (1999) [7] J.Z. Bai *et al.* (BES), Phys. Rev. D **69**, 012003 (2004). [8] G.S. Adams *et al.* (CLEO), Phys. Rev. D **73**, 012002 (2006). [9] M. Ablikim *et al.* (BESIII), Phys. Lett. B **735**, 101 (2014). [10] N.N.Achasov, A.A.Kozhevnikov, Phys. Atom. Nucl. 69, 988 (2006). [11] G. Li et al. Phys. Rev. D 88, 014010 (2013). [12] D. Cronin-Hennessy et al. (CLEO), Phys. Rev. D **74**, 012005 (2006).

[13] J.P. Lees et al. (BABAR), Phys. Rev. D 89, 092002 (2014). [14] J.P. Lees et al. (BABAR), Phys. Rev. D 88, 032013 (2013). [15] K.K. Seth *et al.* Phys. Lett. B **730**, 332 (2014).

The fit with $K_s K_l$ data yields a single solution:

 $\sigma_{\psi(3770)} = 0.073^{+0.62}_{-0.44} \text{ pb},$ $\phi = (308^{+17}_{-34})^{\circ}.$

The values of $\sigma_{\psi(3770)}$ and ϕ are shifted from those for the fit without $K_s K_l$ constraints by about 1.5 σ . The statistical significance is the same, 3.2σ . The branching fraction $B(\psi(3770) \rightarrow K^+K^-)$ corresponding to the measured cross section is about 10⁻⁵.

The same fitting procedure is used in the energy region of the ψ (4160) resonance. The upper limit on the e⁺e⁻ \rightarrow $\psi(3770) \rightarrow K^+K^-$ cross section is set

$\psi(4160)$	< 0.062	pb at	90%	CL.
--------------	---------	-------	-----	-----

The corresponding limit on the branching fraction is B(ψ (4160) → K⁺K⁻) < 2×10⁻⁵ at 90% CL.

International Workshop on e+ e- collisions from Phi to Psi 2015, September 23-26, 2015, University of Science and Technology of China, Hefei, AnHui, China