QED, Lamb shift, `proton charge radius puzzle' etc.

Savely Karshenboim

Pulkovo Observatory (ΓΑΟ ΡΑΗ) (St. Petersburg) & Max-Planck-Institut für Quantenoptik (Garching)

MAX-PLANCK-INSTITUTE OF QUANTUM OPTICS GARCHING

• • • Outline

- Different methods to determine the proton charge radius
 - spectroscopy of hydrogen (and deuterium)
 - the Lamb shift in muonic hydrogen
 - electron-proton scattering
- o The proton radius: the state of the art
 - electric charge radius
 - magnetic radius

• • • Outline

- Different methods to determine the proton charge radius
 - spectroscopy of hydrogen (and deuterium)
 - the Lamb shift in muonic hydrogen
 - electron-proton scattering
- o The proton radius: the state of the art
 - electric charge radius
 - magnetic radius

$$\Delta E_{\text{lead}}(nl) = \frac{2\pi}{3} (Z\alpha) R_p^2 |\psi_{nl}(0)|^2$$
$$= \frac{2}{3} (Z\alpha)^4 m_r^3 R_p^2 \frac{\delta_{l0}}{n^3}$$

$$G'_E(0) = -\frac{1}{6}R_p^2$$

 Different methods to determine the proton charge radius

> Spectroscopy of hydrogen (and deuterium)

• The Lamb shift in muonic hydrogen

Spectroscopy produces a model-independent result, but involves a lot of theory and/or a bit of modeling. o Electron-proton scattering

Studies of scattering need theory of radiative corrections, estimation of two-photon effects; the result is to depend on model applied to extrapolate to zero momentum transfer. Different methods to determine the proton charge radius

> Spectroscopy of hydrogen (and deuterium)

• The Lamb shift in muonic hydrogen

Spectroscopy produces a model-independent result, but involves a lot of theory and/or a bit of modeling. • Electron-proton scattering

Studies of scattering need theory of radiative corrections, estimation of two-photon effects; the result is to depend on model applied to extrapolate to zero momentum transfer.

$$\Delta E_{\text{lead}}(nl) = \frac{2\pi}{3} (Z\alpha) R_p^2 |\psi_{nl}(0)|^2$$
$$= \frac{2}{3} (Z\alpha)^4 m_r^3 R_p^2 \frac{\delta_{l0}}{n^3}$$

Lamb shift measurements in microwave

• Lamb shift used to be measured either as a splitting between $2s_{1/2}$ and $2p_{1/2}$ (1057 MHz)

Lamb shift measurements in microwave

• Lamb shift used to be measured either as a splitting between $2s_{1/2}$ and $2p_{1/2}$ (1057 MHz) or a big contribution into the fine splitting $2p_{3/2} - 2s_{1/2}$ 11 THz (fine structure).

Lamb shift measurements in microwave & optics

- Lamb shift used to be measured either as a splitting between $2s_{1/2}$ and $2p_{1/2}$ (1057 MHz) or a big contribution into the fine splitting $2p_{3/2}$ – $2s_{1/2}$ 11 THz (fine structure).
- However, the best result for the Lamb shift has been obtained up to now from UV transitions (such as 1s – 2s).

Spectroscopy of hydrogen (and deuterium)

Two-photon spectroscopy involves a number of levels strongly affected by QED.

In "old good time" we had to deal only with 2s Lamb shift.

Theory for p states is simple since their wave functions vanish at r=0.

Now we have more data and more unknown variables.

FÜR PHYSIK D © Springer-Verlag 1997

Two-photon spectroscopy The idea is based on involves a number of theoretical study of levels strongly affected $\Delta(2) = L_{1s} - 2^3 \times L_{2s}$ by QED. which we understand In "old good time" we had much better since any to deal only with 2s short distance effect Lamb shift. vanishes for $\Delta(2)$. Theory for petetee in The Lamb shift in the hydrogen atom simple si S. G. Karshenboĭm functions D.I. Mendeleyev Russian Metrology Research Institute, 198005 St. Petersburg, Russia (Submitted 6 April 1994) Zh. Eksp. Teor. Fiz. 106, 414-424 (August 1994) Now we had A theoretical expression is derived for the difference $\Delta E_{\rm L}(1s_{1/2}) - 8\Delta E_{\rm L}(2s_{1/2})$ in Lamb shifts variables to determine: ZEITSCHRIFT

the 1s Lamb shift $L_{1s} \& R_{\infty}$.

The Lamb shift of excited S-levels in hydrogen and deuterium atoms

Savely G. Karshenboim*

Z. Phys. D 39, 109-113 (1997)

Spectroscopy of hydrogen (and deuterium)

- Two-photon spectroscopy involves a number of levels strongly affected by QED.
- In "old good time" we had to deal only with 2s Lamb shift.
- Theory for p states is simple since their wave functions vanish at r=0.
- Now we have more data and more unknown variables.

The idea is based on theoretical study of

 $\Delta(2) = L_{1s} - 2^3 \times L_{2s}$

which we understand much better since any short distance effect vanishes for $\Delta(2)$.

- Theory of p and d states is also simple.
- That leaves only two variables to determine: the 1s Lamb shift L_{1s} & R_∞.

• • • Lamb shift $(2s_{1/2} - 2p_{1/2})$ in the hydrogen atom

Uncertainties:
• Experiment: 2 ppm
• QED: < 1 ppm
• Proton size: ~ 2 ppm (with R_p from e-p scattering) There are data on a number of transitions, but most of their measurements are correlated.

• • • H & D spectroscopy

- Complicated theory
- Some
 contributions are
 not cross checked
- More accurate than experiment
- No higher-order nuclear structure effects

```
\nu_H(1s-2s) = \frac{3}{4} c \operatorname{R}_{\infty} \left\{ 1 \quad + \quad \left[ \frac{11}{48} (Z\alpha)^2 + \frac{43}{384} (Z\alpha)^4 + \frac{851}{12288} (Z\alpha)^6 + \ldots \right] \right.
                                                                                                                            + \frac{m_e}{m_r} \left[ -1 - \frac{13}{24} (Z\alpha)^2 - \frac{17}{64} (Z\alpha)^4 + \ldots \right]
                                                                                                                               + \left(\frac{m_e}{m_p}\right)^2 \left[1 + \frac{41}{48}(Z\alpha)^2 + ...\right]
                                                                                                                             +\left(\frac{m_e}{m_e}\right)^3 \left[-1+\ldots\right]
                                                                                                                             + \frac{(Z\alpha)^3}{\pi} \frac{m_e}{m_e} \left[ -\frac{7}{9} \ln \frac{1}{(Z\alpha)^2} - \frac{8}{9} \ln k_0(2s) + \frac{64}{9} \ln k_0(1s) - \frac{112}{3} \ln 2 - \frac{805}{54} \right]
                                                                                                                            + \frac{(Z\alpha)^3}{\pi} \left(\frac{m_e}{m_p}\right)^2 \left[\frac{7}{3}\ln\frac{1}{(Z\alpha)^2} + \frac{8}{3}\ln k_0(2s) - \frac{64}{3}\ln k_0(1s) + 112\ln 2 + \frac{889}{18}\right] + \dots
                                                                                                                             + \frac{\alpha}{\pi}(Z\alpha)^2 \left[ -\frac{28}{9} \ln \frac{1}{(Z\alpha)^2} - \frac{4}{9} \log k_0(2s) + \frac{32}{9} \log k_0(1s) - \frac{266}{135} \right]
                                                                                                                          + \frac{\alpha}{\pi}(Z\alpha)^2 \frac{m_e}{m_e} \left[ \frac{28}{3} \ln \frac{1}{(Z\alpha)^2} + \frac{4}{3} \log k_0(2s) - \frac{32}{3} \log k_0(1s) + \frac{14}{5} \right]
                                                                                                                             + \frac{\alpha}{\pi} (Z\alpha)^2 \left(\frac{m_e}{m_a}\right)^2 \left[-\frac{56}{3} \ln \frac{1}{(Z\alpha)^2} - \frac{8}{3} \log k_0(2s) + \frac{64}{3} \log k_0(1s) - \frac{14}{15}\right]
                                                                                                                             + \alpha(Z\alpha)^3 \left[ \frac{14}{3} \log 2 - \frac{2989}{288} \right]
                                                                                                                             + \alpha (Z\alpha)^3 \frac{m_e}{m_p} \left[ -14 \log 2 + \frac{2989}{96} \right]
                                                                                                                               + \frac{\alpha}{\pi}(Z\alpha)^4 \left[\frac{7}{8}\ln^2\frac{1}{(Z\alpha)^2} + \left(-\frac{208}{9}\ln 2 + \frac{347}{90}\right)\ln\frac{1}{(Z\alpha)^2} + 71.626974\right] + \dots
                                                                                                                               + \left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^2 \left[-\frac{7}{2}\pi^2 \ln 2 + \frac{70\pi^2}{81} + \frac{15253}{1944} + \frac{21}{4}\zeta(3)\right]
                                                                                                                               + \left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^2 \frac{m_e}{m_n} \left[\frac{21}{2}\pi^2 \ln 2 - \frac{70\pi^2}{27} - \frac{15253}{648} - \frac{63}{4}\zeta(3)\right]
                                                                                                                               + 50.2976 \left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^3
                                                                                                                             + \left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^4 \left[\frac{56}{81}\ln^3\frac{1}{(Z\alpha)^2} + \frac{1}{27}\ln^2\frac{1}{(Z\alpha)^2}\right]
                                                                                                                                                +\left(-\frac{246337}{32400}-\frac{385\pi^2}{81}+\frac{1126}{135}\ln 2-\frac{7\pi^2}{4}\ln 2-\frac{248}{27}\ln^2 2-34.845333\right)\ln\frac{1}{(Z\alpha)^2}
                                                                                                                                                    +147(25) + . .
                                                                                                                             + \quad \left(\frac{\alpha}{\pi}\right)^3 \left(Z\alpha\right)^2 \left[-\frac{248659831}{279936} + \frac{1765757\pi^2}{29160} - \frac{11137\pi^4}{9720} + \frac{7952}{27}\ln 2 - \frac{33509\pi^2}{324}\ln 2 - \frac{11137\pi^4}{324}\right] + \frac{11137\pi^4}{324} + \frac{11137
                                                                                                                                                 +\frac{1673\pi^2}{405}\log^2 2 + \frac{497}{81}\log^4 2 + \frac{588497}{6912}\zeta(3) + \frac{847\pi^2}{216}\zeta(3) - \frac{595}{72}\zeta(5)\right] + \dots
                                                                                                                               + - \frac{\alpha(Z\alpha)^3}{\pi^2} \frac{m_e}{m_p} \left[ \frac{3136}{81} - \frac{245\pi^2}{108} + \frac{14\pi^2}{3} \ln 2 - 14\zeta(3) - \frac{14}{9}\pi(Z\alpha) \ln^2 \frac{1}{(Z\alpha)^2} \right]
                                                                                                                             -\frac{14}{\alpha}(Z\alpha)^2\left(\frac{m_ecR_p}{t}\right)^2
```


• • • The Lamb shift in muonic hydrogen

- Used to believe: since a muon is heavier than an electron, muonic atoms are more sensitive to the nuclear structure.
- Not quite true. What is important: scaling of various contributions with *m*.

- Scaling of contributions
 - nuclear finite size effects: ~ m³;
 - standard Lamb-shift QED and its uncertainties: ~ m;
 - width of the 2p state: ~
 m;
 - nuclear finite size effects for HFS: ~ m³

• • • The Lamb shift in muonic hydrogen: experiment

The size of the proton

Randolf Pohl¹, Aldo Antognini¹, François Nez², Fernando D. Amaro³, François Biraben², João M. R. Cardoso³, Daniel S. Covita^{3,4}, Andreas Dax⁵, Satish Dhawan⁵, Luis M. P. Fernandes³, Adolf Giesen⁶[†], Thomas Graf⁶, Theodor W. Hänsch¹, Paul Indelicato², Lucile Julien², Cheng-Yang Kao⁷, Paul Knowles⁸, Eric-Olivier Le Bigot², Yi-Wei Liu⁷, José A. M. Lopes³, Livia Ludhova⁸, Cristina M. B. Monteiro³, Françoise Mulhauser⁸[†], Tobias Nebel¹, Paul Rabinowitz⁹, Joaquim M. F. dos Santos³, Lukas A. Schaller⁸, Karsten Schuhmann¹⁰, Catherine Schwob², David Taqqu¹¹, João F. C. A. Veloso⁴ & Franz Kottmann¹²

Fig. 16. Level scheme of the PSI experiment on the Lamb shift in a muonic hydrogen [88] (not to scale). The hyperfine structure is not shown.

Figure 4 | **Summed X-ray time spectra**. Spectra were recorded on resonance (**a**) and off resonance (**b**). The laser light illuminates the muonic atoms in the laser time window $t \in [0.887, 0.962] \mu s$ indicated in red. The 'prompt' X-rays are marked in blue (see text and Fig. 1). Inset, plots showing complete data; total number of events are shown.

Figure 5 | **Resonance.** Filled blue circles, number of events in the laser time window normalized to the number of 'prompt' events as a function of the laser frequency. The fit (red) is a Lorentzian on top of a flat background, and gives a χ^2 /d.f. of 28.1/28. The predictions for the line position using the proton radius from CODATA³ or electron scattering^{1,2} are indicated (yellow data points, top left). Our result is also shown ('our value'). All error bars are the ±1 s.d. regions. One of the calibration measurements using water absorption is also shown (black filled circles, green line).

Theoretical summary

#	$\Delta E [\mathrm{meV}]$	Ref.			
Unperturbed quantum mechanics					
0) –0.05088 T				
Specific QED					
1	205.02612	Table II			
2	1.65885	Table II			
3	0.00752	Table II			
4	-0.00089(2)	Table II			
5	-0.00254	Table II			
6	-0.00152	Table II			
Re-scaled QED					
7	-0.66769	Table IV			
8	-0.04497	Table IV			

Proton-line QED					
9	-0.010 41	Eq. (12)			
Proton-finite-size					
10	$-5.1974 \; r_p^2$	Table V			
12	$-0.0282 r_p^2$	Table V			
13	$0.0006 r_p^2$ Table				
14	$0.06354\ r_p^2 - 0.0259(35)$	Table VI			
Proton polarizability					
15	0.0088(21)	Eq. (31)			
Hadronic VP					
16	0.0106(10)	Eq. (35)			
Total	$205.9067(42) - 5.1620 r_p^2$				

Theory of Lamb Shift in Muonic Hydrogen

Savely G. Karshenbolm^{a)} Max-Planck-Institut für Quantenoptik, Garching 85748, Germany and Pulkovo Observatory, St. Petersburg 196140, Russia

> Evgeny Yu. Korzinin and Valery A. Shelyuto D. I. Mendeleev Institute for Metrology, St. Petersburg 190005, Russia

> > Vladimir G. Ivanov

Pulkovo Observatory, St. Petersburg 196140, Russia

#	Contribution		Our selection		Pachuck	ci ¹⁻³	Borie	5
		Ref.	Value	Unc.	Value	Unc.	Value	Unc.
1	NR One loop electron VP	1,2			205.0074			
2	nelativistic correction (corrected)	1–3,5			0.0169			
3	Relativistic one loop VP	5	205.0282				205.0282	
4	NR two-loop electron VP	5,14	1.5081		1.5079		1.5081	
5	Polarization insertion in two Coulomb lines	12,5	0.1509		0.1509		0.1510	
-	NR three-loop electron VP	11	0.00529					
7	Polarisation insertion in two	11,12	0.00223					
	and three Coulomb lines (corrected)							
8	Three-loop VP (total, uncorrected)				0.0076		0.00761	
9	Wichmann-Kroll	5,15,16	-0.00103				-0.00103	
10	Light by light electron loop contribution	6	0.00135	0.00135			0.00135	0.00015
	(Virtual Delbrück scattering)							
11	Radiative photon and electron polarization	1,2	-0.00500	0.0010	-0.006	0.001	-0.005	
	in the Coulomb line $\alpha^2(Z\alpha)^4$							
12	Electron loop in the radiative photon	17-19	-0.00150					
	of order $\alpha^2 (Z\alpha)^4$							
13	Mixed electron and muon loops	20	0.00007				0.00007	
14	Hadronic polarization $\alpha(Z\alpha)^4 m_r$	21-23	0.01077	0.00038	0.0113	0.0003	0.011	0.002
15	Hadronic polarization $\alpha(Z\alpha)^5 m_r$	22,23	0.000047					
16	Hadronic polarization in the radiative	22,23	-0.000015					
	photon $\alpha^2(Z\alpha)^4m_r$							
17	Recoil contribution	24	0.05750		0.0575		0.0575	
18	Recoil finite size	5	0.01300	0.001			0.013	0.001
19	Recoil correction to VP	5	-0.00410				-0.0041	
20	Radiative corrections of order $\alpha^n (Z\alpha)^k m_r$	2,7	-0.66770		-0.6677		-0.66788	
21	Muon Lamb shift 4th order	5	-0.00169				-0.00169	
22	Recoil corrections of order $\alpha(Z\alpha)^5 \frac{m}{M}m_r$	2,5-7	-0.04497		-0.045		-0.04497	
23	Recoil of order α^6	2	0.00030		0.0003			
24	Radiative recoil corrections of	1,2,7	-0.00960		-0.0099		-0.0096	
	order $\alpha(Z\alpha)^n \frac{m}{M}m_r$	0 5 00 05						
25	Nuclear structure correction of order $(Z\alpha)^5$	2,5,22,25	0.015	0.004	0.012	0.002	0.015	0.004
	(Proton polarizability contribution)	22						
26	Polarization operator induced correction	23	0.00019					
	to nuclear polarizability $\alpha(Z\alpha)^5 m_r$	22						
27	Radiative photon induced correction	23	-0.00001					
	to nuclear polarizability $\alpha(Z\alpha)^{5}m_{r}$							/
_	Sum		206.0573	0.0045	206.0432	0.0023	206.05856	0.0046

Table 1: All known radius-**independent** contributions to the Lamb shift in μ p from different authors, and the one we selected. We follow the nomenclature of Eides *et al.*⁷ Table 7.1. Item # 8 in Refs.^{2,5} is the sum of items #6 and #7, without the recent correction from Ref.¹². The error of #10 has been increased to 100% to account for a remark in Ref.⁷. Values are in meV and the uncertainties have been added in quadrature.

 $\Delta E_{LS} = 206.0573(45) - 5.2262 r_{\rm p}^2 - (0.0347 r_{\rm p}^3 \,{\rm meV}) \,\,(1)$

- Discrepancy ~
 0.300 meV.
- Only few contributions are important at this level.
- o They are reliable.

••• Theory of H and μ H:

- o Rigorous
- o Ab initio
- o Complicated
- o Very accurate
- Partly not cross checked
- Needs no higherorder proton structure

- o Rigorous
- o Ab initio
- o Transparent
- o Very accurate
- o Cross checked
- Needs higherorder proton structure (much below the discrepancy)

• • • Theory of H and μ H:

o Rigorous o Rigorous o Ab initio o Ab initio Complicated Transportent The *th* uncertainty is much below the level of the discrepancy o very accurate o very accurate o Cross checked o Partly not cross checked o Needs highero Needs no higherorder proton structure (much order proton below the structure discrepancy)

Spectroscopy of H and μH:

- Many transitions in different labs.
- One lab dominates.
- o Correlated.
- Metrology involved.
- The discrepancy is much below the line width.
- Sensitive to various systematic effects.

- o One experiment
- A correlated
 measurement on μD
- No real metrology
- Discrepancy is of few line widths.
- Not sensitive to many perturbations.

••• Hvs μH:

- o μ H: much more sensitive to the R_p term:
 - less accuracy in theory and experiment is required;
 - easier for estimation of systematic effects etc.
- o H experiment: easy to see a signal, hard to interpret.
- o μH experiment: hard to see a signal, easy to interpret.

• • • Elastic electron-proton scattering

Elastic electron-proton scattering

• • • Elastic electron-proton scattering

Fifty years:

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$

- data improved (quality, quantity);
- accuracy of radius stays the same;
- systematic effects of fitting: increasing the complicity of the fit.

- spectroscopy of hydrogen (and deuterium)
- the Lamb shift in muonic hydrogen
- electron-proton scattering

• Comparison:

FIG. 3: (Color online) The proton RMS charge radius from previous e_P scattering analysis (Sick [40]), Mainz low Q^2 measurement (Bernauer *et al.* [37]) and this work compared to the CO-DATA [41] and muonic hydrogen spectroscopy (Pohl *et al.* [42]). The red dashed lines show the combined results from CODATA, Bernauer *et al.* and this work, while the black dotted lines show the Pohl *et al.* uncertainty.

Present status of proton radius

charge radius and the Rydberg constant: a strong discrepancy.

- If I would bet:
 - systematic effects in hydrogen and deuterium spectroscopy
 - error or underestimation of uncalculated terms in 1s Lamb shift theory
- Uncertainty and modelindependence of scattering results.

magnetic radius:

a strong discrepancy between different evaluation of the data and maybe between the data

Present status of proton radius

charge radius and the Rydberg constant: a strong discrepancy.

- If I would bet:
 - systematic effects in hydrogen and deuterium spectroscopy
 - error or underestimation of uncalculated terms in 1s Lamb shift theory
- Uncertainty and modelindependence of scattering results.

magnetic radius:

a strong discrepancy between different evaluation of the data and maybe between the data

Proton radius determination as a probe of the Coulomb law

hydrogen	q ~ 1 - 4 keV	
e-p		
muonic hydrogen µ-p	q ~ 0.35 MeV	- CODATA-2006 - H&D -
scattering e-p	q from few MeV to 1 GeV	- • PSI, μH
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$