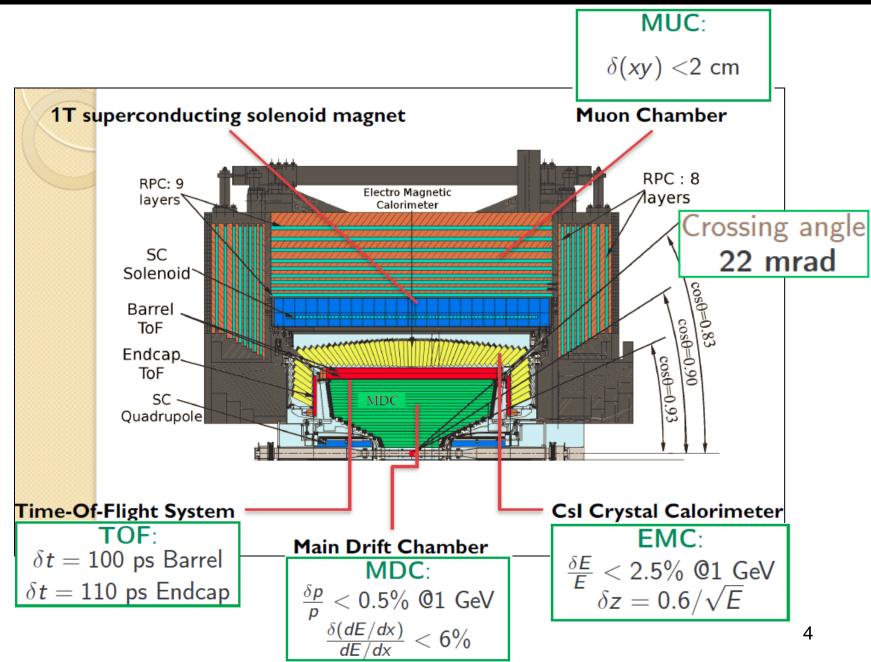
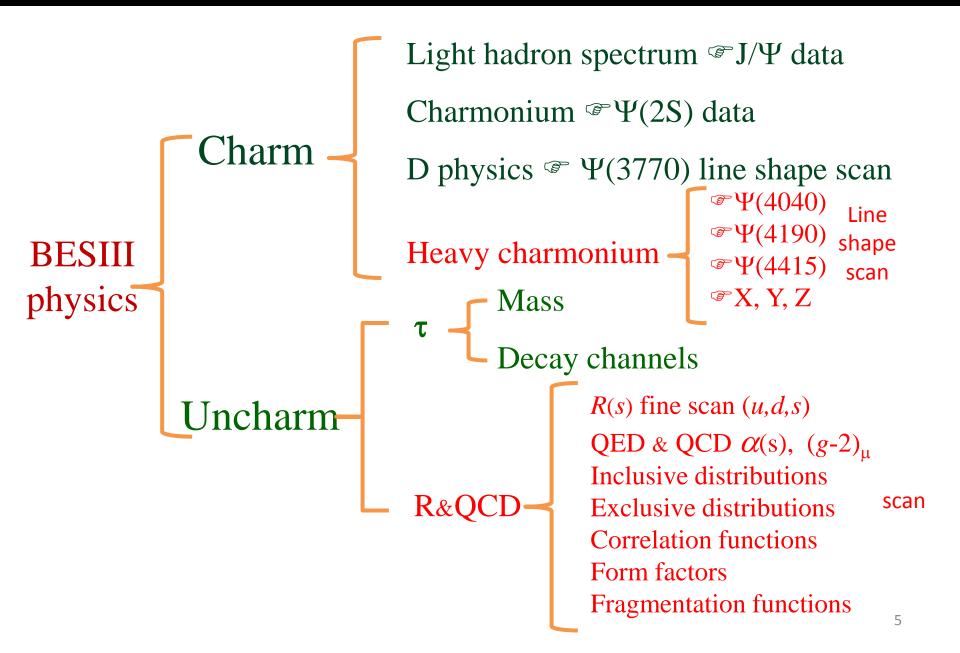

Status of R scan at BESIII Haiming HU Institute of High Energy Physics (For the BESIII Collaboration)

10th International Workshop e⁺ e⁻ Collisions from Phi to Psi USTC, Hefei, China 2015.09.23-27


Outline

- Motivation
- Data samples of R-QCD scan
- Status of R value measurement
- Summary

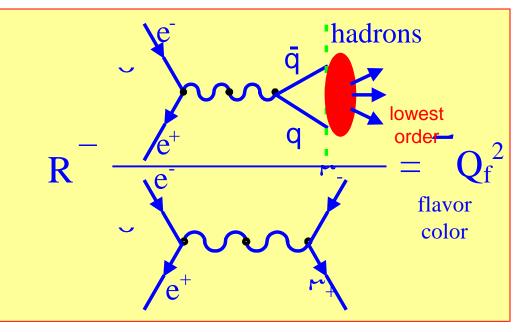

Beijing Electron-Positron Collider II (BEPCII)

Beijing Spectrometer III (BESIII)

Main projects of BESIII Physics

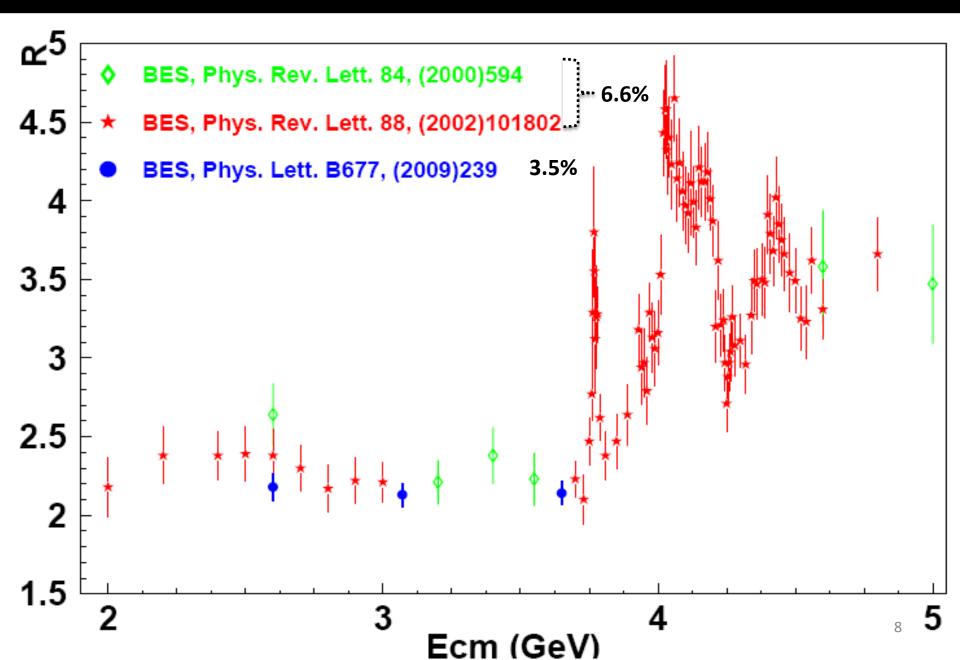
Motivation

The main physical projects for R – QCD scan

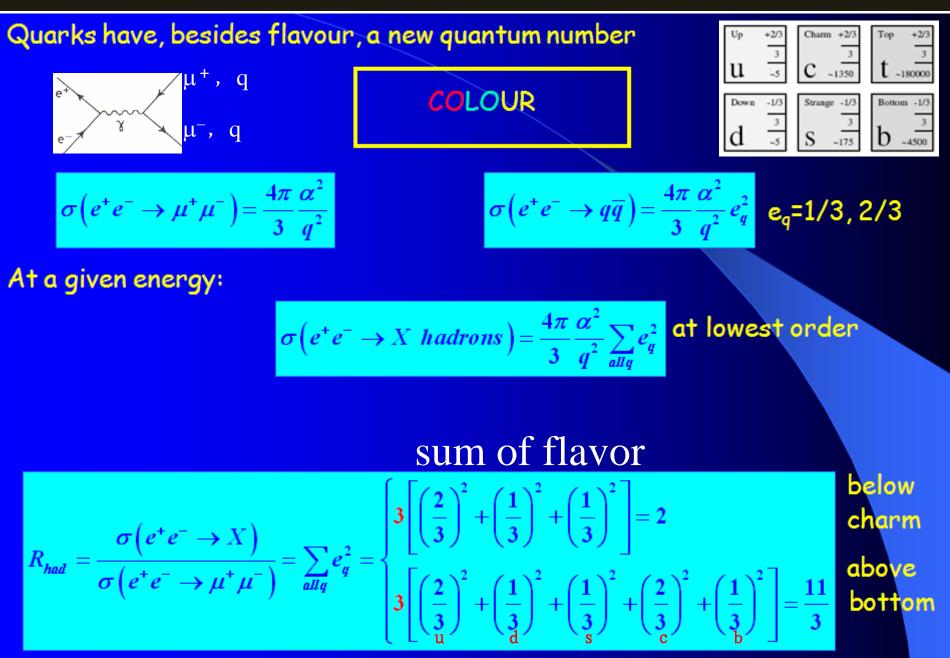

- R value between 2.0 4.6 GeV
- ψ -family line shape and resonant parameters
- Form factors of mesons and baryons

What is R Value

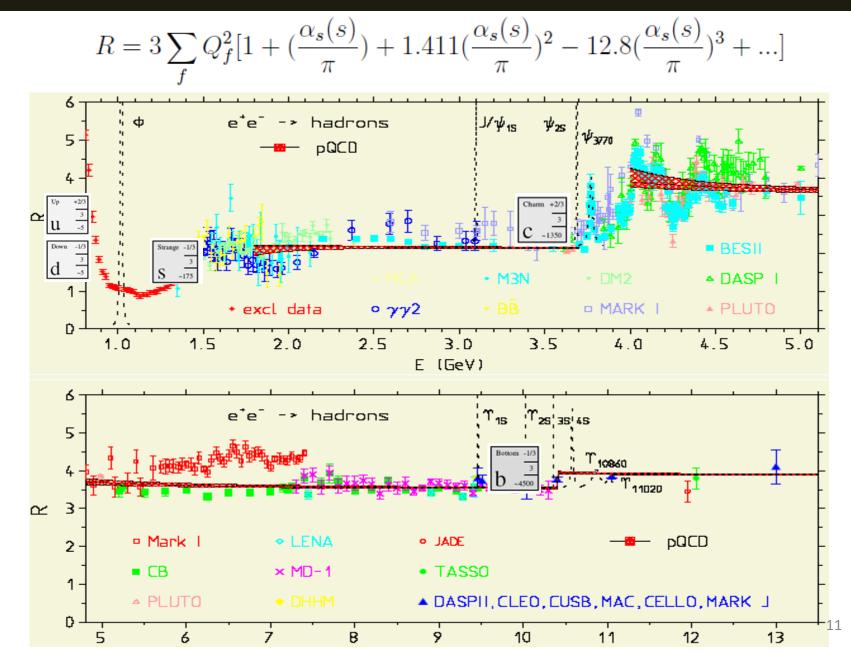
The Born cross section of e^+e^- annihilation into hadrons normalized by theoretical $\mu^+\mu^-$ cross section.


$$R = \frac{\sigma^0_{had}(e^+e^- \to \gamma^* \to \text{hadrons})}{\sigma^0_{\mu\mu}(e^+e^- \to \gamma^* \to \mu^+\mu^-)}$$

Feynman diagram of R value


Groups ever measured R value: BESII, VEPP, DA Φ NE, DM2, DASP, PLUTO, Crystal-Ball, MARKI, MARKII, CLEO-c, AMY, JADE, TASSO, CUSB, MD-1, MARKJ, SLAC-LBL, MAC, $\gamma\gamma2....$

R value measurements at **BESII**



The significance of R value to the SM

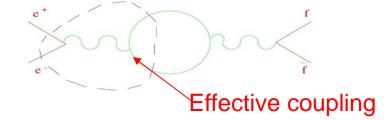
R value is the direct evidence of number of color

R value measurements test **QCD** prediction

R value is the input parameter of $\alpha(s)$

Electromagnetic coupling fine structure constant when

momentum transfer approach zero:

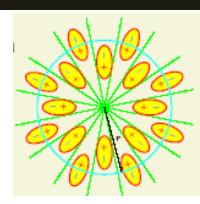

 $\alpha^{-1}(0) = 137.03599911(46)$

In high energy processes, vacuum is polarized. The effective

coupling interaction is energy dependent, the so called EM

running coupling constant:

$$\alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha(s)}$$

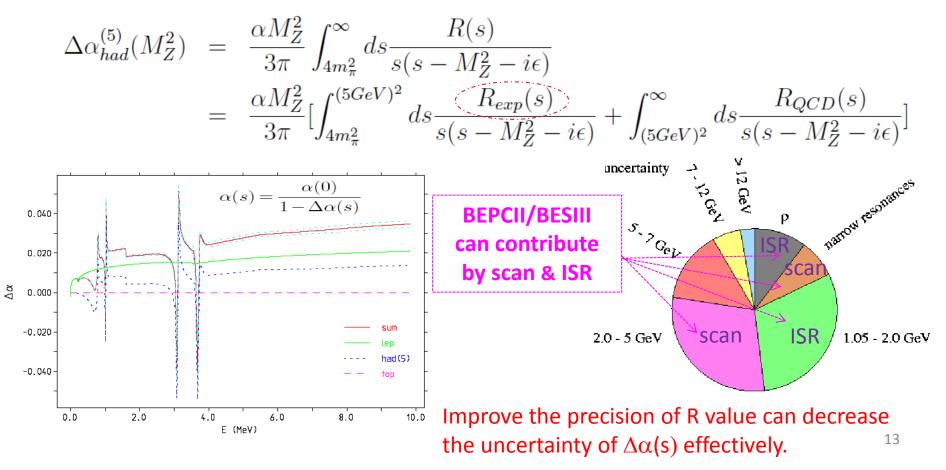


According to the contributions to vacuum polarization

$$\Delta \alpha(s) = \Delta \alpha_{e\mu\tau}(s) + \Delta \alpha_{top}(s) + \Delta \alpha_{had}^{(5)}(s)$$

(1) leptonic contribution:

$$\Delta \alpha_{e\mu\tau}(M_Z^2) = \sum_{l=e,\mu\tau} \frac{\alpha}{3\pi} \left[-\frac{8}{3} + \beta_l^2 - \frac{1}{2} \beta_l (3 - \beta_l^2) \ln(\frac{1 - \beta_l}{1 + \beta_l}) \right] = 0.03142_{12}$$



R value is the input parameter of $\alpha(s)$

• top quark very heavy, contribution very small

$$\Delta \alpha_{top}(M_Z^2) = -\frac{4\alpha}{45\pi} \frac{M_Z^2}{m_t^2} = -0.00007(1)$$

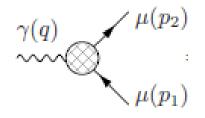
• quarks with flavors (u, d, s, c, b)

The Dirac equation of a charged fermion in electromagnetic field (A,B)

$$i\hbar\frac{\partial}{\partial t}\varphi = \left[\frac{1}{2m}(\vec{P} + \frac{e}{c}\vec{A})^2 + \frac{e\hbar}{2mc}\vec{\sigma}\cdot\vec{B} - e\phi\right]\varphi$$

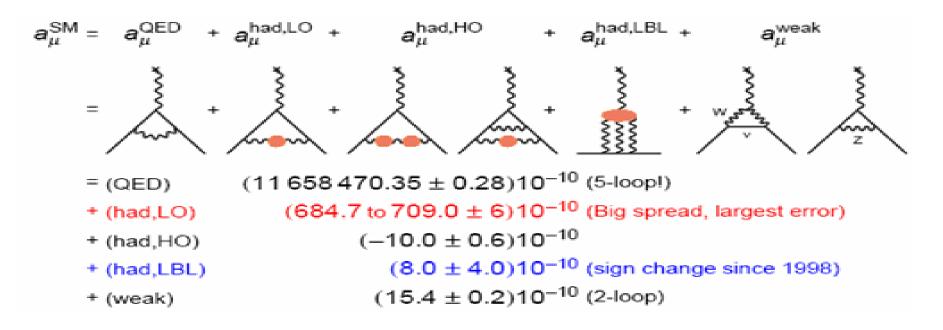
point-like fermion has magnetic moment

$$\vec{\mu} = -\frac{e\hbar}{2mc}\vec{\sigma} = -\frac{e}{mc}\vec{S}$$


define Bohr magneton:

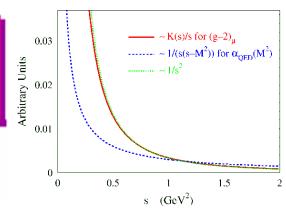
$$\mu_B = \frac{e\hbar}{2mc}$$

the magnetic moment of bare fermion:


$$\mu = g\mu_B S \qquad g = 2$$

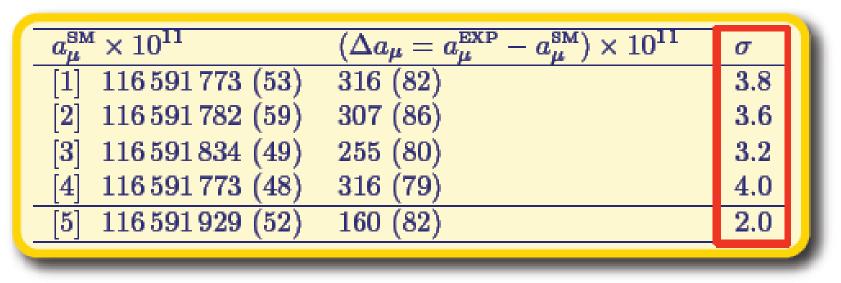
Considering the radiative correction of the vertex

 $\Rightarrow g \neq 2 \Rightarrow$ anomalous magnetic moment: $a_{\mu} = (g_{\mu} - 2)/2$


The Standard Model (SM) prediction for muon (g-2):

 $a_{\mu}^{\text{had,LO}}$ from data via dispersion integral $a_{\mu}^{\text{had,LO}} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} \sigma_{\text{had}}^0(s) K(s) ds$

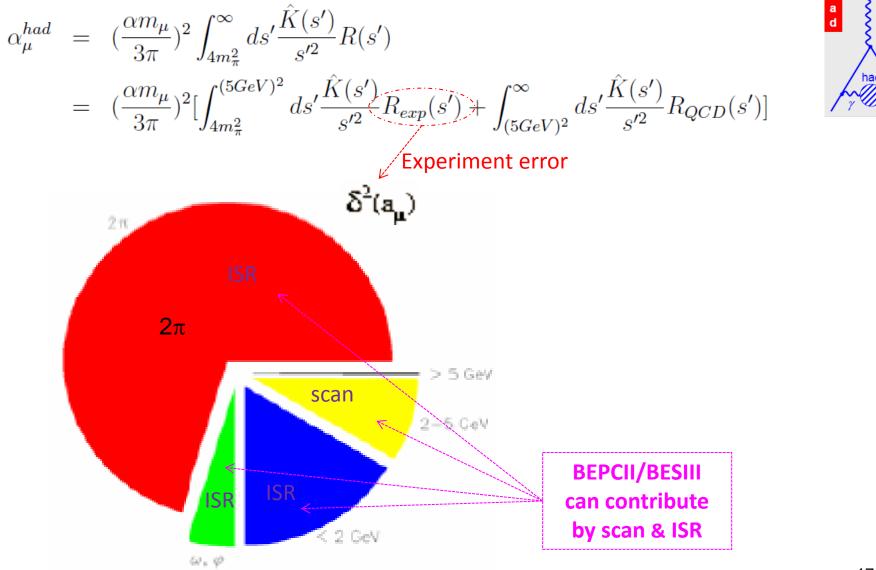
Recent data included CMD-2, SND, BES 2-5 GeV, ALEPH τ . NEW: CMD-2 prelim update


 σ_{had}^0 bare cross-section for $e^+e^- \rightarrow hadrons$, i.e. taking out radiative corrections. QED kernel $K(s) \sim m_u^2/3s$, gives strong weight to low energy data.

Discrepancy between SM and experiments:

 $a_{\mu}^{E \times P}$ = 116592089 (63) × 10⁻¹¹

E821 – Final Report: PRD73 (2006) 072 with latest value of $\lambda = \mu_{\mu}/\mu_{p}$ (Codata '06)



[1] HMNT06, PLB649 (2007) 173.

with a ^{HHO}(lbl) = 105 (26) x 10⁻¹¹

- [2] F. Jegerlehner and A. Nyffeler, arXiv:0902.3360.
- [3] Davier et al, arXiv:0908.4300 August 2009 (includes BaBar)
- [4] Haqiwara, Liao, Martin, Nomura, Teubner, Oct '09 (preliminary)
- [5] Davier et al, arXiv:0906.5443v2 August 2009 (τ data).

The contribution of the hadronic cross section to (g-2):

Measurement of α_s at by R values

2.40

2.35

2.30 2.25

2.20 R 2.15

2.10 2.05 2.00 1.95

0.0

R_i+8R

R,-öR

0.1 0.2

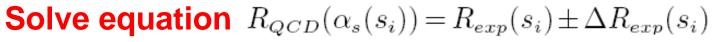
2

0.3

0.4

0.5

0.6


0.7

0.9

 $\boldsymbol{\alpha}_{s}$

0.8

മ

Obtain coupling constant at every energies, and then evolve them to 5 GeV with

$$Q^2 \frac{\partial \, \alpha_{\rm s}(Q^2)}{\partial \, Q^2} = \beta(\alpha_{\rm s}(Q^2))$$

Weighted average

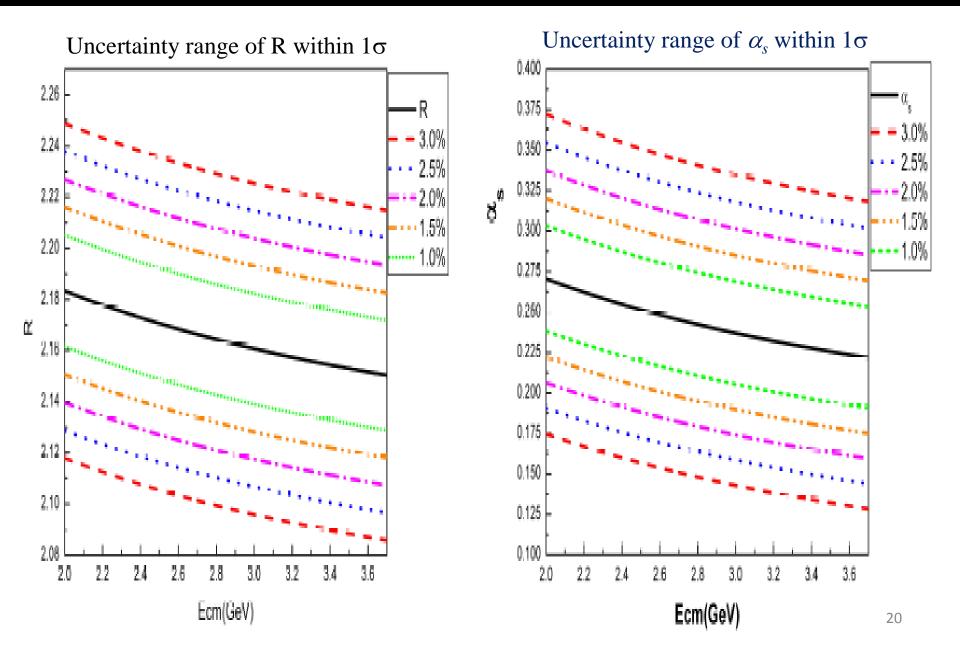
PDG2(

$$\overline{\alpha_s}(5GeV) = \sum_i \frac{\alpha_s(s_i)}{S_i} / \sum_i \frac{1}{S_i}$$
$$S_i = \int_{\alpha_s(s_i) = \Delta'}^{\alpha_s(s_i) + \Delta_i} R(\alpha_s) d\alpha_s$$

$\sigma \alpha_s(s_i)$	$\overline{\Delta}_{down} = \sqrt{1}$	$\sqrt{\sum_{i} \Delta_{i}^{\prime - 2}}$ $\overline{\Delta}_{i}$	$_{up} = \sqrt{1/\sum_{i} \Delta_{i}^{-2}}$	
/s(GeV)	$\alpha^{(3)}(s)$	$\alpha_{\rm e}^{(4)}O5~{\rm GeV}^2$	$\bar{\alpha}_{-}^{(4)}$ (25 GeV ²)	$\alpha_{*}^{(5)}(M$

V3(GCV)	α_{s} (3)	u _e (25 GeV)	u_{s} (25 GeV)	$\alpha_s (m_z)$
2.60	$0.266^{+0.030+0.125}_{-0.030-0.116}$	$0.212\substack{+0.018+0.068\\-0.019-0.086}$		
3.07	$0.192^{+0.029+0.103}_{-0.029-0.101}$	$0.169^{+0.022+0.074}_{-0.023-0.086}$	$0.209\substack{+0.044\\-0.050}$	$0.117^{+0.012}_{-0.017}$
3.65	$0.207\substack{+0.015+0.104\\-0.015-0.104}$	$0.189\substack{+0.012+0.082\\-0.013-0.091}$		

$$\alpha_s(M_Z^2) = 0.1170 \pm 0.001$$

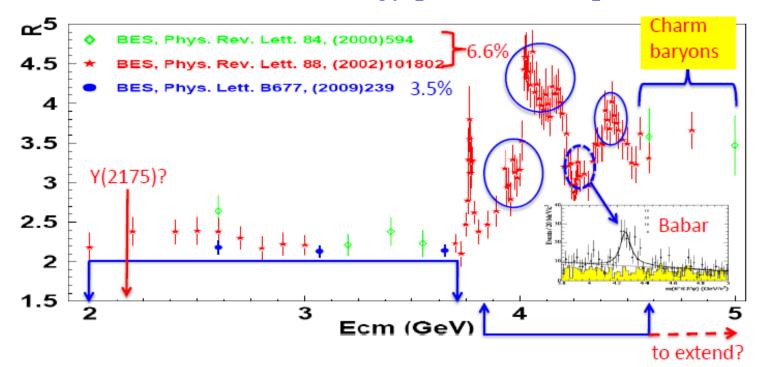

(c)

R value error \rightarrow error of α_s

Q. Cror	or 3.0%		2.5%		2.0%		1.5%		1.0%	
Ecm/GeV	Up(%)	Dw(%)	$\operatorname{Up}(\%)$	Dw(%)	$\operatorname{Up}(\%)$	Dw(%)	$\operatorname{Up}(\%)$	Dw(%)	$\operatorname{Up}(\%)$	Dw(%)
2.00	37.7	35.4	31.1	29.6	24.7	23.7	18.4	17.8	12.2	11.9
2.10	38.1	35.9	31.4	29.9	25.0	24.0	18.6	18.1	12.3	12.1
2.20	38.4	36.3	31.8	30.3	25.3	24.3	18.8	18.3	12.5	12.2
2.30	38.8	36.8	32.0	30.7	25.5	24.6	19.0	18.5	12.6	12.4
2.40	39.2	37.2	32.4	31.0	25.8	24.9	19.2	18.7	12.8	12.5
2.50	39.6	37.6	32.8	31.4	26.0	25.2	19.4	18.9	12.9	12.6
2.60	40.0	38.1	33.0	31.8	26.3	25.4	19.6	19.1	13.0	12.7
2.70	40.2	38.5	33.3	32.1	26.5	25.8	19.8	19.3	13.1	12.9
2.80	40.6	38.9	33.6	32.4	26.7	26.0	20.0	19.5	13.2	13.0
2.90	41.0	39.3	33.9	32.7	27.0	26.2	20.2	19.7	13.3	13.2
3.00	41.4	39.7	34.3	33.1	27.3	26.5	20.4	19.9	13.5	13.3
3.10	41.6	40.1	34.4	33.4	27.4	26.7	20.4	20.1	13.5	13.4
3.20	42.0	40.4	34.8	33.7	27.7	27.0	20.7	20.2	13.7	13.5
3.30	42.3	40.8	35.0	34.0	27.8	27.2	20.8	20.4	13.8	13.7
3.40	42.6	41.1	35.3	34.2	28.1	27.4	21.0	20.6	14.0	13.7
3.50	42.9	41.5	35.6	34.6	28.3	27.6	21.1	20.8	14.1	13.8
3.60	43.1	41.8	35.8	34.8	28.3	27.9	21.3	20.9	14.1	14.0
3.70	43.4	42.1	36.0	35.1	28.7	28.1	21.4	21.0	14.2	14.1

So, α_s can be determined based on R, and independent of any model, but the error of α_s larger than that of R value, it is not an "economical" way.

R value error \rightarrow error of α_{s}

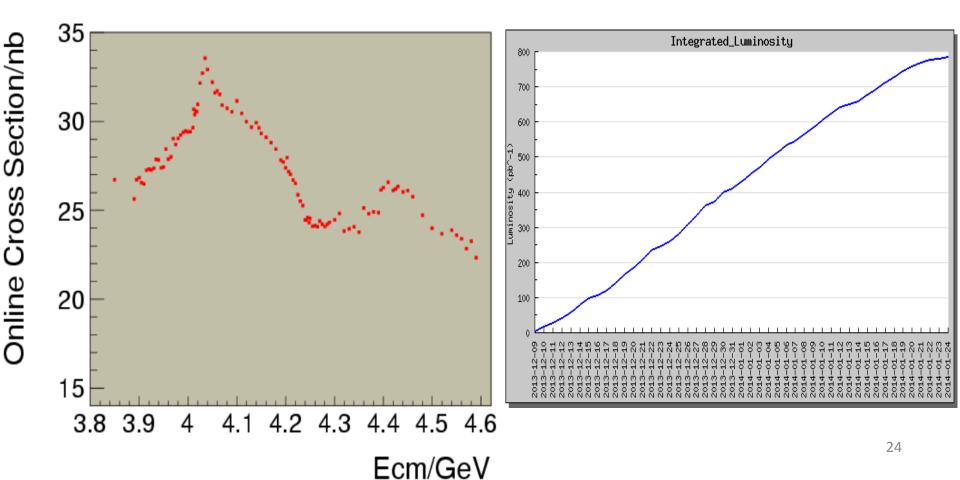

Data samples of R – QCD scan

R&QCD scan data taking plan

• Phase I: test run (2012)

@ Ecm = 2.232, 2.400, 2.800, 3.400 GeV, 4 energy points, ~12/pb

- Phase II: fine scan for heavy charm resonant line shape (2013–2014)
 @ 3.800 4.590 GeV, 104 energy points, ~ 800/pb
- Phase III: R&QCD scan (2015)
 @ 2.000 3.080 GeV, 19+2 energy points, ~ 500/pb

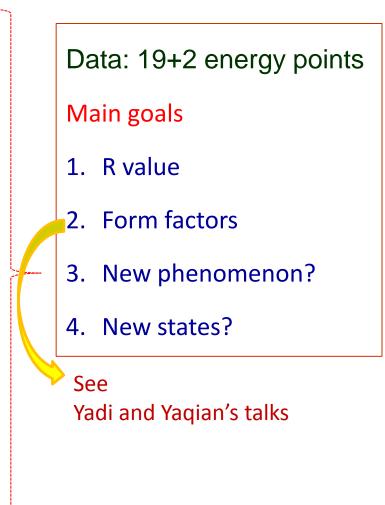

22

Phase I: R-QCD scan below open charm

- BESIII collected data at 2.23, 2.4, 2.8 and 3.4 GeV during June 8–16, 2012;
- Total integrated luminosity ~12 pb-1;
- Useful information for BEPCII/BESIII at low energy;
- The data being used for MC generator tuning;
- Necessary to establish analysis chain;
- R value measurement ;
- Baryon and meson form factors;
- fragmentation function study.

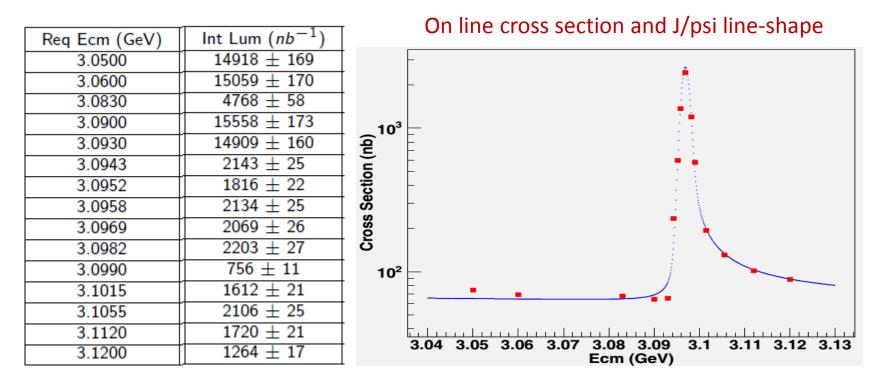
Phase II: R line shape scan between 3.8 - 4.6 GeV

- Data taken 2013.12.9 2014.1.24;
- 104 energy points in total, ~800 pb⁻¹;
- >100k hadronic events each points.


Phase III: R scan between 2.0 – 3.08 GeV

- Data taken at: 19+2 points, ~500 pb⁻¹;
- Precision of R measurement expected: ~3%;
- Nucleon form factors: 9-15% accuracy;
- Suspicious structures in the $p\overline{p}$ invariant mass;
- Hyperon form factor studies;
- Studies of threshold effects (Λ , Σ , Ξ);
- Determination of $\alpha_{\rm s}$ and charm quark mass;
- Quark fragmentation functions;

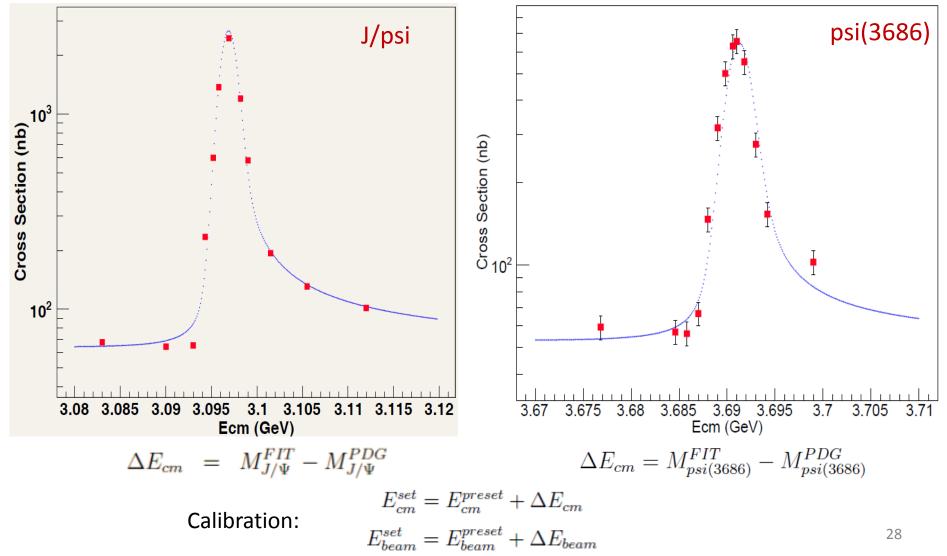
Third run: R scan between 2.0 – 3.08 GeV


Data samples between 2.0 – 3.08 GeV collected in 2015

E_{cm}	E_{th}	L_{Needed}	t_{beam}	Purpose
(GeV)	(GeV)	(pb^{-1})	(days)	
2.0		≥ 8.95	14.6	Nucleon FFs
2.1		10.8	14.8	Nucleon FFs
2.15		2.7	2.29	Y(2175)
2.175		10(+)	8.5	Y(2175)
2.2		13	11	Nucleon FFs, $Y(2175)$
2.2324	2.2314	11	4	Hyp threshold $(\Lambda \overline{\Lambda})$
2.3094	2.3084	20	16	Nucleon & Hyp FFs
				Hyp Threshold $(\Sigma^0\overline{\Lambda})$
2.3864	2.3853	20	8.7	Hyp Threshold $(\Sigma^0 \overline{\Sigma}^0)$
				Hyp FFs
2.3960	2.3949	≥ 64	27.8	Nucleon & Hyp FFs
				Hyp Threshold $(\Sigma^{-}\overline{\Sigma}^{+})$
2.5		0.4895	8h	R scan
2.6444	2.6434	65	18	Nucleon & Hyp FFs
				Hyp Threshold $(\Xi^{-}\overline{\Xi}^{+})$
2.7		0.5542	4.2h	R scan
2.8		0.6136	4h	R scan
2.9		100	18.5	Nucleon & Hyp FFs
2.95		15	2.8	$m_{p\bar{p}}$ step
2.981		15	2.8	η_c , $m_{par{p}}$ step
3.0		15	2.8	$m_{p\bar{p}}$ step
3.02		15	2.8	$m_{p\bar{p}}$ step
3.08		120	13.2	Nucleon FFs $(+30 \text{ pb}^{-1})$

J/psi line shape scan between 3.0500–3.1200 GeV

Data have been taken around the J/psi peak at 12 energy points in 2012



Physical goal: measure the leptonic, hadronic and total widths of J/psi by following channels:

- 1. $e^+e^- \rightarrow e^+e^-$
- 2. $e^+e^- \rightarrow \mu^+\mu^-$
- 3. $e^+e^- \rightarrow hadrons$

Energy calibration

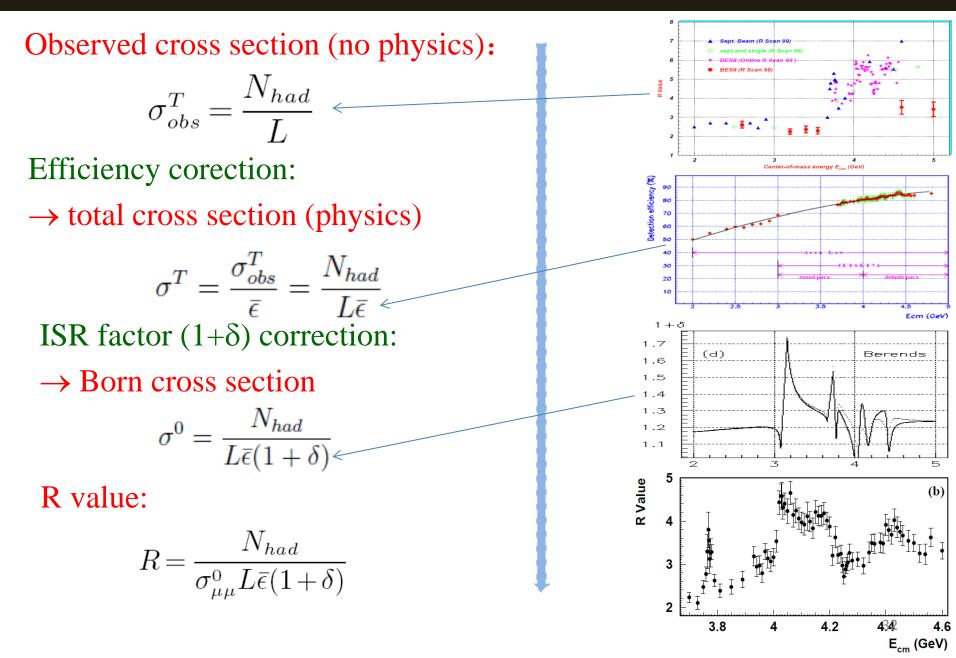
During the data taking, sever times J/psi and psi(3686) fast scan were done, and fit the on line cross section to calibrate the beam energy.

Data samples taken at BESIII

Taking data	Total Num. / Lum.	Taking time
<i>J</i> /ψ	225+1086 M	2009+2012
ψ(2 <i>S</i>)	106+350 M	2009+2012
ψ(3770)	2916 pb ⁻¹	2010~2011
τ scan	24 pb ⁻¹	2011
Y(4260)/Y(4230)/Y(4360)/scan	$806/1054/523/488 \text{ pb}^{-1}$	2012~2013
4600/4470/4530/4575/4420	$506/100/100/42/993 \text{ pb}^{-1}$	2014
J/ψ line-shape scan	100 pb^{-1}	2012
R scan (2.23, 3.40) GeV	12 pb ⁻¹	2012
R scan (3.85, 4.59) GeV	795 pb ⁻¹	2013~2014
R scan (2.0, 3.08) GeV	~525 pb ⁻¹	2014~2015
Y(2175)	~100 pb ⁻¹	2015 ₂₉

Status of R value measurement

R value measurement with data


In experiment, R values are measured with

$$R = \frac{1}{\sigma_{\mu+\mu-}} \cdot \frac{N_{had} - N_{bg}}{L \cdot \varepsilon_{had} \cdot (1 + \delta)}$$

Tasks in experiment:

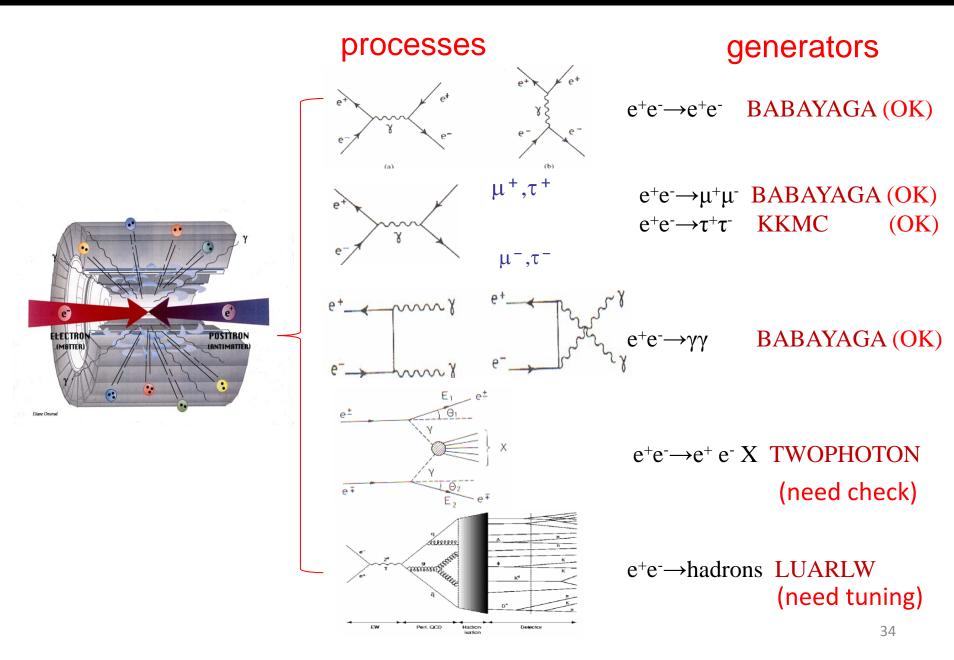
- N_{had} observed hadronic events
- **N**_{bg} background events
- *L* integrated luminosity
- *Ehad* detection efficiency for hadronic events
- $1+\delta$ radiative correction factor
- $\sigma_{\mu\mu}$ Born cross section of μ pair production in QED.

The efficiency and ISR factor correction

Present status of R value measurement

$$R = \frac{1}{\sigma_{\mu+\mu-}} \cdot \frac{N_{had} - N_{bg}}{L \cdot \varepsilon_{had} \cdot (1 + \delta)}$$

 N_{had} , $N_{bg} \rightarrow$ event selection:

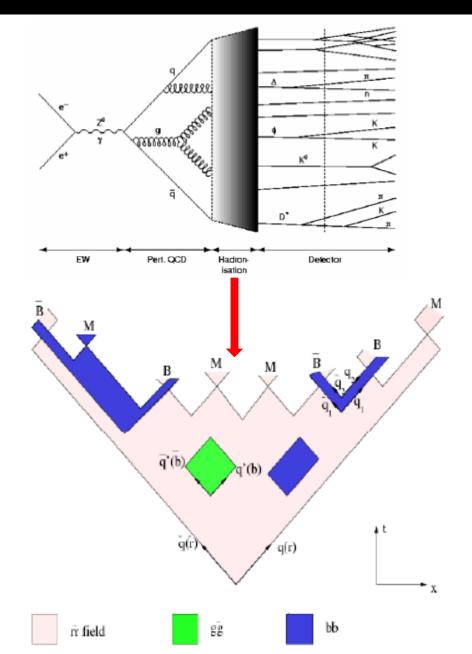

below open charm finished, above open charm in progress.

- $L \rightarrow$ integrated luminosity:
- finished, error ~ 1%.
- $\varepsilon_{had} \rightarrow$ hadronic generator LUARLW tuning:

two schemes are doing, cross check, largest error source?

- $1+\delta \rightarrow$ theoretical calculations:
- finished, error ~1.5%, including the contribution from $\Delta\sigma^{0}_{\text{had}}$
- Error analysis:
- on going, final goal $\Delta R/R \sim 2.5-3.0\%$

The generators used in R measurement


Functions of LUARLW

LUARLW can simulate ISR inclusive continuous channels and $J^{PC} = 1^{-1}$ resonances from 2–5 GeV, phenomenological parameters need tuning.

$$\begin{split} e^+e^- \Rightarrow \gamma^* \Rightarrow \rho(770), & (0782), \phi(1020), \omega(1420), \rho(1450), \omega(1650), \phi(1680), \rho(1700) \\ e^+e^- \Rightarrow \gamma^* \Rightarrow \begin{cases} q\bar{q} \Rightarrow \text{string} \Rightarrow \text{hadrons} \\ gq\bar{q} \Rightarrow \text{string} + \text{string} \Rightarrow \text{hadrons} \\ ggq\bar{q} \Rightarrow \text{string} + \text{string} \Rightarrow \text{hadrons} \\ e^+e^- \Rightarrow \gamma^* \Rightarrow \psi(2S) \Rightarrow \begin{cases} \gamma^* \Rightarrow e^+e^-, \ \mu^+\mu^-, \ \tau^+\tau^- \\ \gamma^* \Rightarrow q\bar{q} \Rightarrow \text{string} + \text{string} \Rightarrow \text{hadrons} \\ ggg \Rightarrow \gamma^+ \text{string} + \text{string} \Rightarrow \text{hadrons} \\ ggg \Rightarrow \gamma^+ \text{string} + \text{string} \Rightarrow \text{hadrons} \\ \gamma \eta_e \end{cases} \\ e^+e^- \Rightarrow \gamma^* \Rightarrow \psi(2S) \Rightarrow \begin{cases} \psi(4040) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s, D_s\bar{D}_s, D_s\bar{D}_s^*, D_s^*\bar{D}_s^*. \end{cases} \\ e^+e^- \Rightarrow \gamma^* \Rightarrow \psi(4160) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, D\bar{D}^*, D_s\bar{D}, D_s\bar{D}_s, D_s\bar{D}_s^*, D_s^*\bar{D}_s^*. \end{cases} \\ e^+e^- \Rightarrow \gamma^* \Rightarrow \begin{cases} \psi(4040) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, D\bar{D}^*, D_s\bar{D}, D_s\bar{D}_s, D_s\bar{D}_s^*, D_s^*\bar{D}_s^*. \end{cases}$$

 $e^+e^- \Rightarrow \gamma^* \Rightarrow X(4160), X(4260) \cdots$ with $J^{PC} = 1^{--}$

Picture of Lund string fragmentation

36

Basic formula of LUARLW

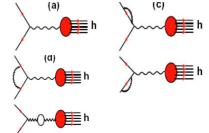
The lowest cross section for the exclusive channel

$$\sigma(e^+e^- \to m_1, m_2, \cdots m_n) = \int d\Omega_{q\bar{q}} \frac{d\sigma(e^+e^- \to q\bar{q})}{d\Omega_{q\bar{q}}} \cdot \wp_n(q\bar{q} \to m_1, m_2, \cdots m_n; s)$$

The QED cross section for quark pair production

$$\frac{d\sigma(e^+e^- \to q\bar{q})}{d\Omega_{q\bar{q}}} = N_c \frac{\alpha^2}{4s} \cdot e_q^2 \beta [1 + \cos^2\theta + (1 - \beta^2)\sin^2\theta]$$

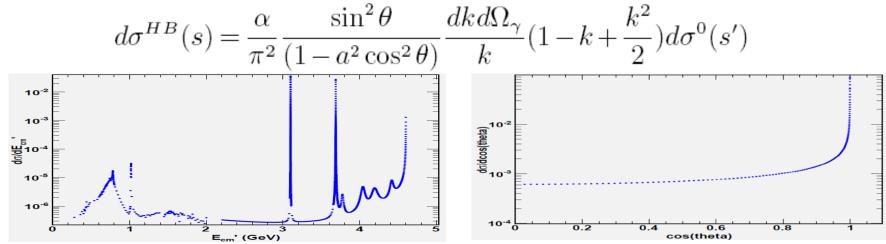
The string fragmentation probability in Lund area law


0

ISR sampling in LUARLW simulation

In the MC simulation, the events are classed into two types

(1) non real radiation: tree level, virtual and soft radiations events.


$$\sigma^{VSB} = \sigma^0(s) [1 + \beta \ln k_0 + \delta_{AR}]$$

2) real radiation: hard bremsstrahlung events. Weight: $\sigma^{HB} = \int_{k_0}^{k_m} dk \frac{\partial \sigma^{HB}}{\partial k}$

Weight:

The energy and polar angle distribution of real emission photon

Parameters for primary hadron multiplicity

N-particle system partial function in Lund area law

$$Z_n = s \int d\Phi_n \exp(-b\mathcal{A}_n)$$

Multiplicity distribution for preliminary fragmentation hadrons

$$P_n = Z_n / \sum Z_r$$

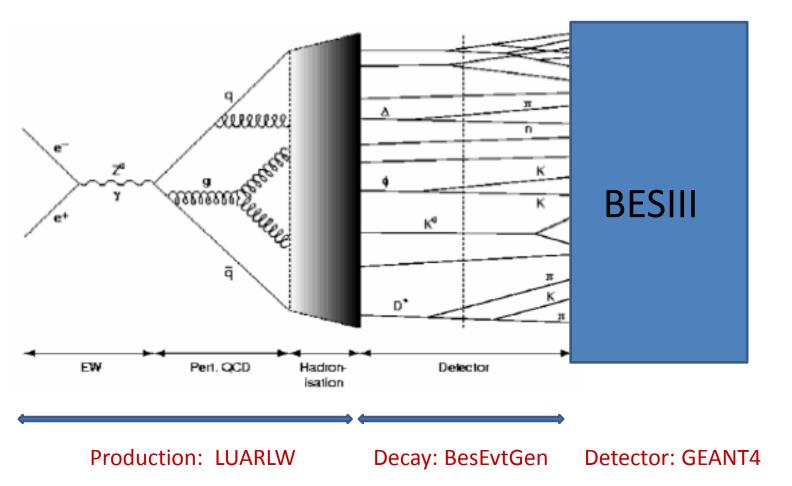
Approximate expression

$$P_n(s) = \frac{\mu^n}{n!} \exp[c_0 + c_1(n-\mu) + c_2(n-\mu)^2]$$

 $\boldsymbol{\mu}$ predicted by pQCD

$$\mu = \alpha + \beta \exp(\gamma \sqrt{s})$$

c₀, c₁, c₂ and α , β , γ are free parameters to be tuned.


Parameters for string fragmentaion hadrons

Related to ratio of baryon and meson with different quantum number

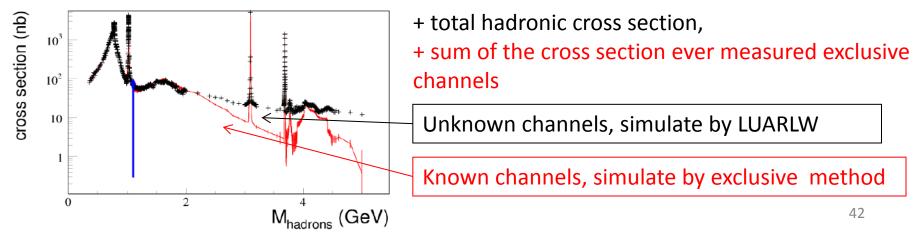
parameter	default	tuned	meaning		
PARJ(1)	0.10	0.10	diquark/quark production ratio (baryon suppression) (B/M)		
PARJ(2)	0.30	0.28	s/(u,d) production ratio (strange meson suppression $K/\pi)$		
PARJ(3)	0.40	0.55	extra strange diquark suppression (strange baryon suppression $(\Lambda/p))$		
PARJ(4)	0.05	0.07	extra suppression of spin 1 diquark compared to spin 0 ones		
PARJ(11)	0.50	0.55	suppression of light meson has spin 1 compared to spin 0 (ρ/π)		
PARJ(12)	0.60	0.55	suppression of strange meson has spin 1 compared to spin 0 (K^\star/K)		
PARJ(13)	0.75	0.75	suppression of charm meson has spin 1 compared to spin 0 (D^\star/D)		
PARJ(14)	0.00	0.09	probability that a spin s=0 and orbital L=1 with total J=1 meson		
PARJ(15)	0.00	0.07	probability that a spin s=1 and orbital L=1 with total J=0 meson		
PARJ(16)	0.00	0.09	probability that a spin s=1 and orbital L=1 with total J=1 meson		
PARJ(17)	0.00	0.14	probability that a spin s=1 and orbital L=1 with total J=2 meson		

By comparing data with MC, it is found that in BEPC energy region, some parameters in the table are not constants, they are slightly energy dependent.

Simulation of hadron production and decay

Parameter tuning and optimization of LUARLW

Scheme A: optimization fit


• Assume LUARLW is approximately described by a parameterized response function

Z. Phys. C 26, 157 (1984) Z. Phys. C 41, 359(1988) Eur. Phys. J. C 65 , 331 (2010)

$$f(\mathbf{p}_0 + \delta \mathbf{p}, x) = a_0^{(0)}(x) + \sum_{i=1}^n a_i^{(1)}(x)\delta p_i + \sum_{i=1}^n \sum_{j=1}^n a_{ij}^{(2)}(x)\delta p_i\delta p_j \approx MC(\mathbf{p}_0 + \delta \mathbf{p}, x)$$

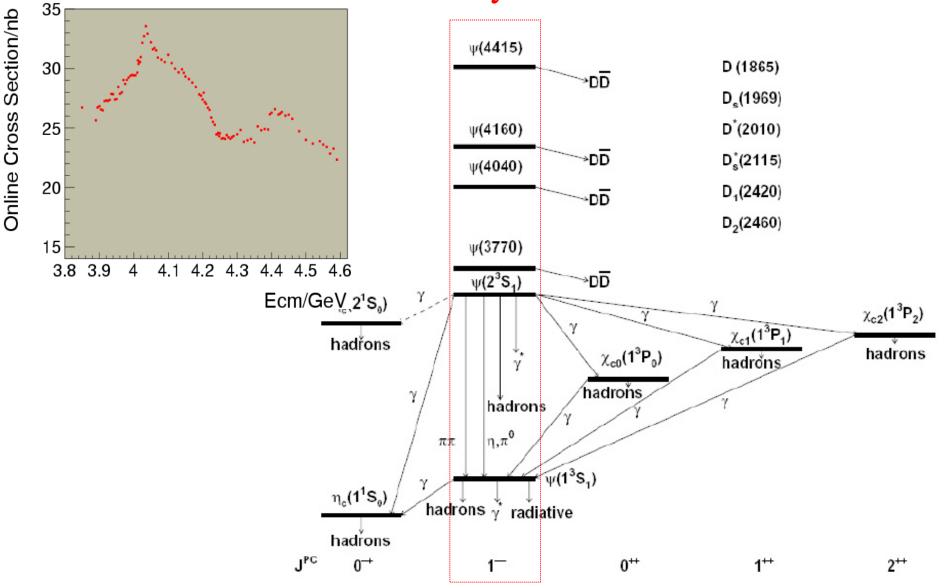
The phenomenological parameters in LUARLW are treated as free numbers in fit, the optimal values are obtained by simultaneously fit this function to the data.


• The channels ever measured by experiments use the experimental values, and the unmeasured channels use LUARLW.

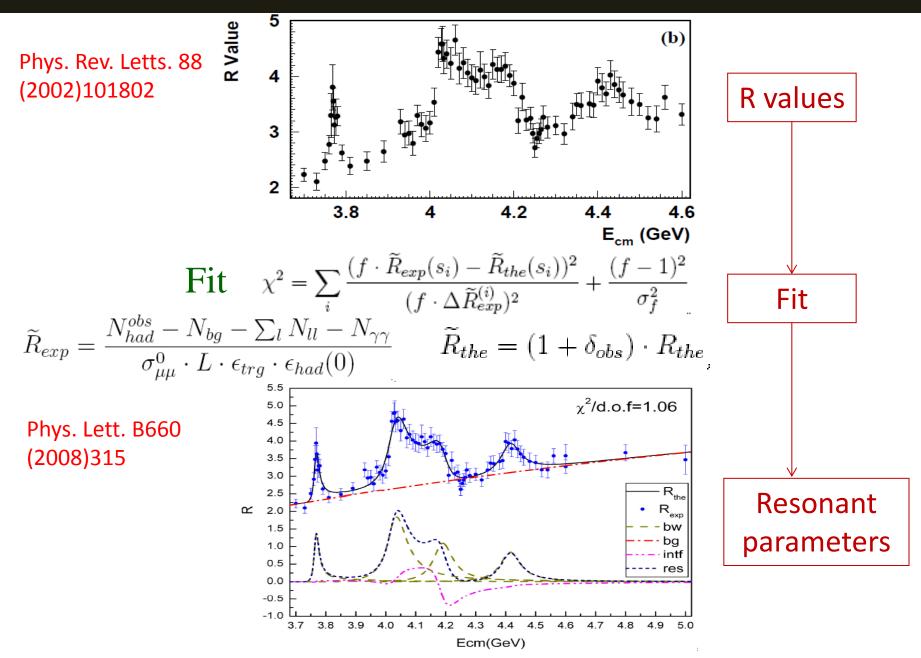
Parameter tuning and optimization of LUARLW

Scheme B: manual tuning first, optimization fit last

Choose about 30 final state distributions, such as, charged and neutral multiplicity, $\cos\theta$, deposit energy, momentum, ratios of mesons and baryons, et al. Compare the differences between data and MC which only using LUARLW, tune the corresponding parameters within the reasonable ranges, again and again, until obtain a set of reasonable parameters, then use scheme A to optimize them.



At present, the differences of the hadronic efficiency estimated by the two schemes are about ~2%.


Next, more effort have to do, until systematic error of the efficiency no exceed 2%.

Heavy vector charmonia line shape

Confirmed charmoniums family in BESII era

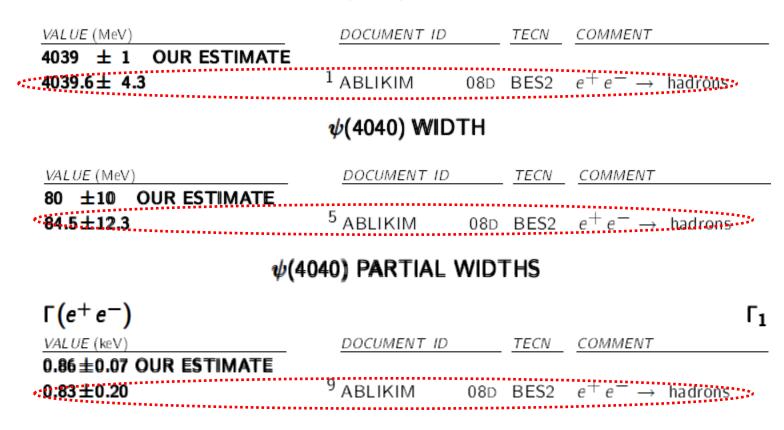
Aim to understand resonant structure

Theoretical problems in resonant parameters fit

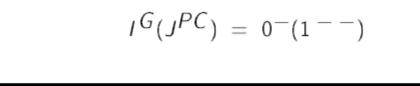
The measurement of R value and the resonant parameters are closely related and affected by the following theoretical factors:

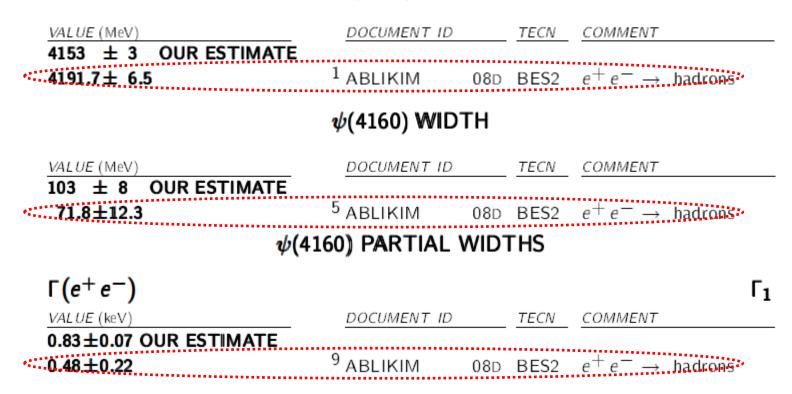
- ✓ What is the correct Breit-Wigner form for wide resonance?
- ✓ How to introduce intrinsic/effective initial phase angle?
- ✓ How amplitudes interfere between final states?
- ✓ How guarantee the unitary of the interference?
- ✓ How the total widths depend on energy?
- ✓ How to express the continuous charm backgrounds in fit?

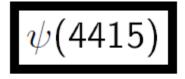
Parameters of the excited charmonia resonances


Similar work like did at BESII, but improved measurement at BESIII

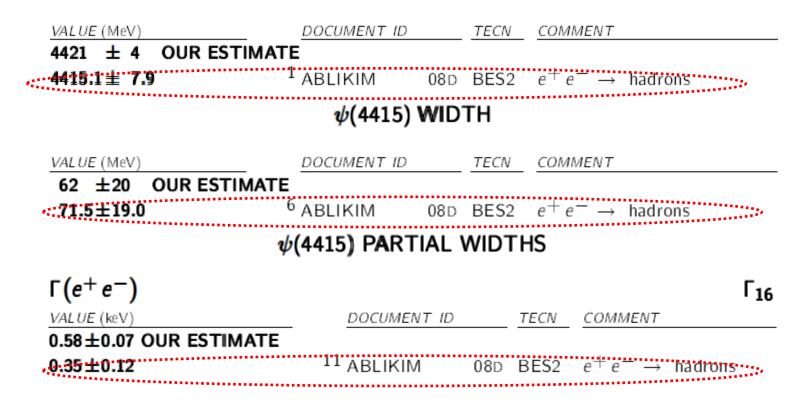
At BESII, parameters (M, Γ_{tot} , Γ_{ee}) of the J^{PC} = 1⁻⁻ conventional charmonia $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$ remain quite uncertain and model dependent:


	M, MeV	$\Gamma_{\rm tot}$, MeV	$\Gamma_{\rm ee}$, keV	δ, deg	
ψ(3770)	3772.92 ± 0.35	27.3 ± 1.0	0.265 ± 0.018		PDG09
	3772.0 ± 1.9	30.4 ± 8.5	0.22 ± 0.05	0	BES08
ψ(4040)	4039 ± 1	80 ± 10	0.86 ± 0.07		PDG09
	4039.6 ± 4.3	84.5 ± 12.3	0.83 ± 0.20	130 ± 46	BES08
ψ(4160)	4153 ± 3	103 ± 8	0.83 ± 0.07		PDG09
	4191.7 ± 6.5	71.8 ± 12.3	0.48 ± 0.22	293 ± 57	BES08
ψ(4415)	4421 ± 4	62 ± 20	0.58 ± 0.07		PDG09
	4415.1 ± 7.9	71.5 ± 19.0	0.35 ± 0.12	234 ± 88	BES08


ψ(4040) MASS


¹ Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region 3.7–5.0 GeV covering the $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta = (130 \pm 46)^{\circ}$.

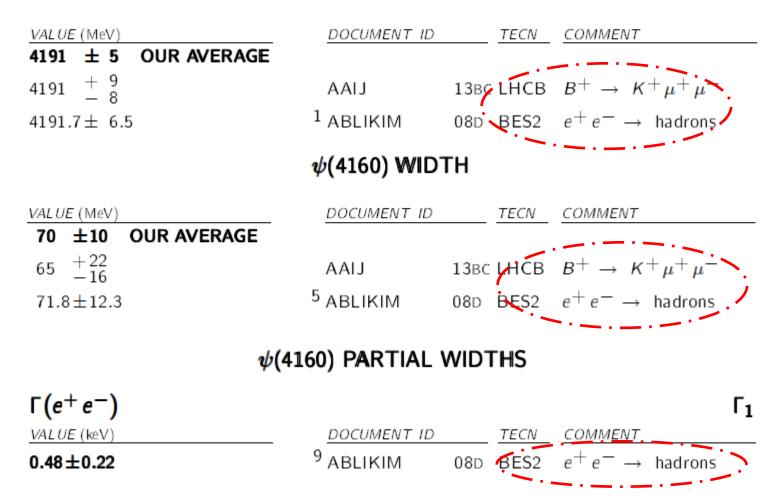
ψ(4160) MASS



⁵ Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region 3.7–5.0 GeV covering the $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta = (293 \pm 57)^{\circ}$.

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

$\psi(4415)$ MASS



¹ Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region 3.7–5.0 GeV covering the $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta = (234 \pm 88)^{\circ}$.

$$\psi$$
(4160)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

ψ(4160) MASS

Summary

- Data taking plans of phaseI-III finished, data sets for R scan and QCD study between 2.0 – 4.6 GeV have been collected.
- Data analysis for R value measurement between 2.2324-3.671 GeV are almost finished, but the analysis for other data samples need further optimization.
- The LUARLW parameter tuning are in progress, which is a tough and challenge work, and could be the largest error source (1.5-2.0%) for R value measurement.
- The related theoretical study about the heavy charmonia line shape fit are doing, which are crucial for obtaining reliable values.
- Preliminary results of R measurement between 2.2324-3.671 GeV have reported inside BES Collaboration, the analysis for other energy points are in going.