BESIII $\pi\pi$ Form Factor Measurement and Perspective for 3π

Yaqian WANG

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Johannes Gutenberg University Mainz

(on behalf of the BESIII Colaboration)

The 10th International Workshop on e^+e^- collisions from ϕ to ψ 23-26 Deptember, 2015 Hefei, China

Outline

Introduction

Data samples and BESIII Machine

Outline

Data samples and BESIII Machine

イロト イヨト イヨト イヨト

Hadronic VP and muon g-2

Hadronic vacuum polarization

$$-\sqrt{\sqrt{\gamma^*}}$$

•
$$a_{\mu}^{\text{SM}} = (\frac{g-2}{2})_{\mu} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{weak}}$$

 $\left[\frac{\gamma}{2} \text{ and leptonic} \right]$
 $\left[a_{\mu}^{\text{had},\text{LO}} = \frac{\alpha^{2}(0)}{3\pi^{2}} \int_{4m_{\pi}^{2}}^{\infty} \mathrm{d}s \frac{K(s)}{s} R(s) \right]$

Yaqian WANG (JGU)

・ロト ・ 四ト ・ ヨト ・ ヨト

Hadronic VP and muon g-2

Hadronic vacuum polarization

$$-\sqrt{\sqrt{\gamma^*}}$$

•
$$a_{\mu}^{\text{SM}} = (\frac{g-2}{2})_{\mu} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{weak}}$$

 $\left[\frac{\gamma}{2} \text{ and leptonic} \right]$
 $\left[Z, W^{\pm}, \text{ and Higgs} \right]$
 $a_{\mu}^{\text{had},\text{LO}} = \frac{\alpha^2(0)}{3\pi^2} \int_{4m_{\pi}^2}^{\infty} ds \frac{K(s)}{s} R(s) \right]$
 $\frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$

・ロト ・ 四ト ・ ヨト ・ ヨト

Initial State Radiation at BaBar

D. Bernard [BaBar Collaboration], PoS Hadron 2013, 126 (2013) [arXiv:1402.0618 [hep-ex]].

- Most important channels: $\pi^+\pi^-$, KK, $\pi^+\pi^-\pi^0$, $\pi^+\pi^-2\pi^0$
- Largest contribution to uncertainty: $\pi^+\pi^-$, $\pi^+\pi^-2\pi^0$, $KK\pi\pi$

Yaqian WANG (JGU)

Outline

Data samples and BESIII Machine

BEPCII

BEPCII

- τ -charm factory
- Beam energy: 2 4.6 GeV
- Design luminosity: $10^{33} \text{ cm}^{-2} s^{-1}$ (at 3.773 GeV)
- Linac + double storage ring

BESIII Detector

・ロト ・聞 ト ・ ヨト ・ ヨト

Data samples

Integrated luminosities BESIII

Yaqian WANG (JGU)

Data samples

Yaqian WANG (JGU)

Outline

Introduction

Data samples and BESIII Machine

イロト イヨト イヨト イヨト

$\pi^+\pi^-$ at BaBar and KLOE

 $\pi^+\pi$

- Obvious discrepancy between BaBar and KLOE
- High precision measurement @ BESIII

Yaqian WANG (JGU)

< 6 b

- E - N

Event Selection and Particle Identification

 $\pi^+\pi$

- Kinematic Fit for $\pi^+\pi^-\gamma_{ISR}$
- MDC, TOF, and EMC for electron rejection
- Artificial Neuronal Network for $\mu \pi$ separation

 $\pi^+\pi$

QED test $e^+e^- \rightarrow \mu^+\mu^-\gamma$

Yaqian WANG (JGU)

▶ < ≣ ▶ ≣ ∽ Q (PhiPsi2015 13/29 $\pi^+\pi$

QED test $e^+e^- \rightarrow \mu^+\mu^-\gamma$

Yaqian WANG (JGU)

PhiPsi2015 13 / 29

Systematic Uncertainties

Source	Uncertainty (%)
Photon efficiency	0.2
Tracking efficiency	0.3
Pion ANN efficiency	0.2
Pion e-PID efficiency	0.2
Angular acceptance	0.1
Background subtraction	0.1
Unfolding	0.2
FSR correction δ_{FSR}	0.2
Vacuum polarization correction δ_{vac}	0.2
Radiator function	0.5
Luminosity $\mathcal L$	0.5
Sum	0.9

• • • • • • • • • • •

$\pi^+\pi^-$ Cross Section

•
$$\sigma_{\pi\pi(\gamma_{\text{FSR}})}^{\text{bare}} = \frac{N_{\pi\pi\gamma} \cdot (1 + \delta_{\text{FSR}}^{\pi\pi})}{\mathcal{L} \cdot \epsilon_{\text{global}}^{\pi\pi\gamma} \cdot H(s) \cdot \delta_{\text{vac}}}$$

• $\rho \cdot \omega$ interference clearly visible

 $\pi^+\pi$

Comparison Nomalized by $\sigma_{\mu^+\mu^-}$

•
$$\sigma_{\pi\pi(\gamma_{\rm FSR})}^{\rm bare} = \frac{N_{\pi\pi\gamma}}{N_{\mu\mu\gamma}} \cdot \frac{\epsilon_{\rm global}^{\mu\mu\gamma}}{\epsilon_{\rm global}^{\pi\pi\gamma}} \cdot \frac{1 + \delta_{\rm FSR}^{\mu\mu}}{1 + \delta_{\rm FSR}^{\pi\pi}} \cdot \sigma_{\mu\mu}^{\rm bare}$$

 $\pi^+\pi$

R

Comparison Nomalized by $\sigma_{\mu^+\mu^-}$

•
$$\sigma_{\pi\pi(\gamma_{\rm FSR})}^{\rm bare} = \frac{N_{\pi\pi\gamma}}{N_{\mu\mu\gamma}} \cdot \frac{\epsilon_{\rm global}^{\mu\mu\gamma}}{\epsilon_{\rm global}^{\pi\pi\gamma}} \cdot \frac{1 + \delta_{\rm FSR}^{\mu\mu}}{1 + \delta_{\rm FSR}^{\pi\pi}} \cdot \sigma_{\mu\mu}^{\rm bare}$$

 $\pi^+\pi$

R

Contribution to $a_{\mu}^{VP,LO}$

- $a_{\mu}^{\pi\pi,\text{LO}}(600 900 \,\text{MeV}) = (370.0 \pm 2.5_{\text{stat}} \pm 3.3_{\text{sys}}) \cdot 10^{-10}$
- Precision competitive with previous measurements
- BESIII measurement between BaBar and KLOE
- Confirmed deviation between experiment and theory
- arXiv:1507.08188 and submitted to PLB

Yaqian WANG (JGU)

$\pi^+\pi^-$ Form Factor (Gounaris-Sakurai Parameterization)

 $\pi^+\pi$

• Issue with extraction of $|F_{\pi}|^2$ from cross section measurement

R

• Updated $|F_{\pi}|^2$ with respect to arXiv:1507.08188

Yaqian WANG (JGU)

PhiPsi2015 18 / 29

Comparison with BaBar

Yaqian WANG (JGU)

PhiPsi2015 19 / 29

R

Comparison with KLOE

R

PhiPsi2015 20 / 29

Outline

Introduction

Data samples and BESIII Machine

$3 \pi^+\pi^-$

・ロト ・ 四ト ・ ヨト ・ ヨト

 $\pi^{+}\pi^{-}\pi^{0}$

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$

- History of σ for $e^+e^- \rightarrow \pi^+\pi^-\pi^0$:
 - $\sqrt{s} \lesssim 1$ GeV: $\omega(782)$ and $\phi(1020)$
 - Published results above ϕ :
 - SND : up to 1.4 GeV
 - DM2: 1.34 ~ 2.40 GeV
 - BaBar : 1.05 ~ 3.00 GeV

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Belle and SND

 $\pi^{+}\pi^{-}\pi^{0}$

 $e^+e^-
ightarrow \gamma_{\rm ISR} \pi^+\pi^-\pi^0$ from Belle

イロン イ理 とく ヨン イヨン

$e^+e^- ightarrow \gamma_{\rm ISR} \pi^+\pi^-\pi^0$ at BESIII

PhiPsi2015 24 / 29

$e^+e^- ightarrow \gamma_{\rm ISR} \pi^+\pi^-\pi^0$ at BESIII

Tagged is necessary in low mass range

PhiPsi2015 24 / 29

$e^+e^- ightarrow \gamma_{\rm ISR} \pi^+\pi^-\pi^0$ at BESIII

- Tagged is necessary in low mass range
- Untagged is more efficient in high mass range

Yaqian WANG	(JGU)
-------------	-------

$e^+e^- \rightarrow \gamma_{\rm ISR} \pi^+\pi^-\pi^0$ at BESIII

- Tagged is necessary in low mass range
- Untagged is more efficient in high mass range
- Both tagged and untagged are feasible at BESIII. Our goal: < 5%

Outline

2 Data samples and BESIII Machine

イロト イヨト イヨト イヨト

Summary

- $e^+e^- \rightarrow \pi^+\pi^-$
 - Cross section is measured at BESIII with sys. below 1%
 - Δa_{μ} is confirmed
- $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
 - Feasible study at BESIII
 - Benefit from both tagged and untagged
- Outlook
 - Extend tagged $\pi^+\pi^-$ ISR study to threshold region
 - Untagged ISR for $\pi^+\pi^-$ cross section at higher mass range
 - Analyze $\pi^+\pi^-$ form factor from R-scan data (130 points, $\mathcal{L} \approx 1.3 \text{fb}^{-1}$)
 - Ongoing Analysis of $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

Thank you very much!

・ 同 ト ・ ヨ ト ・ ヨ ト

Back up

FSR Correction

Theoretical calculation of a_{μ}

$$\begin{aligned} a_{\mu}^{theo} &= a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{QCD}} \\ a_{\mu}^{\text{QED}} &= (116584718.104 \pm 0.148) \times 10^{-11} \\ a_{\mu}^{\text{QED}} &= (153.2 \pm 1.0 \pm 1.5) \times 10^{-11} \\ a_{\mu}^{\text{QCD}} &= a_{\mu}^{\text{LbL}} + a_{\mu}^{\text{VP,LO}} + a_{\mu}^{\text{VP,HO}} \\ a_{\mu}^{\text{VP,LO}} &= (6949.1 \pm 42.7) \times 10^{-11} \\ a_{\mu}^{\text{VP,HO}} &= (-97.9 \pm 0.9) \times 10^{-11} \\ a_{\mu}^{\text{LbL}} &= (105 \pm 26) \times 10^{-11} \end{aligned} \text{ (Glasgow consensus)}$$

-