$\pi^0\pi^0$ production and form factors for f₀(980) and f₂(1270) in single-tag two-photon process

Qingnian Xu (For the Belle Collaboration)

International Workshop on e+e- collisions from Phi to Psi 23-26 Sep, 2015, USTC, Hefei, China

Motivation

- Single-tag two-photon production of hadronic system, $\gamma * \gamma \rightarrow M$ in $e^+e^- \rightarrow e^{\pm}\gamma * \gamma$ (plus undetected e^{\mp}), is interesting to
 - study strong interaction in low energy region, where pQCD can't be applied;
 - ➤ measure Q² dependence of Transition Form Factor (TFF);
 - test QCD-based theoretical predictions;
 - > provide input for a data-driven estimate of the hadronic light-by-light contribution [1] significant for the problem of muon g 2.

Ref: [1] G. Colangelo, M. Hofenrichter, B. Cubis, M. Procula and P. Stoffer, Phys. Lett. B 738, 6 (2014).

Selection criteria

1. A tagging lepton(e^{+}/e^{-}), E/p > 0.8 and p>1.0 GeV/c.

2. One $\pi_0(\pi 1)$: E_{γ} > 0.1 GeV (selected by the energetic order, rather high energy) and 0.115 < M($\gamma\gamma$) < 0.150 GeV .

3. The other $\pi_0(\pi 2)$: (rather low energy), mass-constraint fit for other two photons $\chi_2 < 16$ and no more other π_0 candidates.

- 4. Right-sign for e-tag charge : $q_{tag} x (p_{z,e}^* + p_{z,\pi 1}^* + p_{z,\pi 2}^*) < 0$, in $e^+e^- c.m.$ frame.
- 5. 3-body kinematics (4-momentum conservation): for (e) e R, R $\equiv \pi^0 \pi^0$ system 0.85 < Eratio < 1.1, where $E_{ratio} = E^*_{\pi 0\pi 0, measured} / E^*_{\pi 0\pi 0, expected}$, $E^*_{\pi 0\pi 0, measured}$ ($E^*_{\pi 0\pi 0, expected}$) is the e+e- c.m. energy of the $\pi^0 \pi^0$ system measured directly (expected by kinematics without radiation).
- 6. pt-balance: $|\Sigma \mathbf{p}t^*|$ (for e and two $\pi \circ s$) < 0.2 GeV/c.

Signal MC and comparison of distributions for selected signal candidates

- MC generator TREPSBSS
- Uniform angular distribution for signal MC.
- No large discrepancy between data and signal MC.
- The background in data is not very large.
- Q^2 , is calculated in the e⁺e⁻ c.m. fram as

$$Q_{\text{rec}}^2 = -(p_{\text{beam}} - p_e)^2$$

= $2E_{\text{beam}}^* E_e^* (1 + q_{\text{tag}} \cos \theta_e^*)$

2015/9/24

Kinematical distributions, E_{ratio} and P_t-balance

2015/9/24

Efficiency estimated from signal-MC

W- and $|\cos\theta^*|$ - dependent efficiencies for 4 selected Q² bins

e+e- based Cross Section

- Detector acceptance is much different between e- and p-tags.
- The cross-sections measurement are consistent.
- Validation check for systematic effects (trigger, acceptance, selection) is satisfied.

$\gamma^*\gamma$ based Cross Section

Combine the measurement of p- and e-tag :

$$\frac{d^{3}\sigma_{ee}}{dWd|\cos\theta^{*}|dQ^{2}} = \frac{Y(W,|\cos\theta^{*}|,Q^{2})(1-b(W,|\cos\theta^{*}|,Q^{2}))}{\varepsilon'(W,|\cos\theta^{*}|,Q^{2})\Delta W\Delta|\cos\theta^{*}|\Delta Q^{2}\int \mathcal{L}dt}$$

$$\begin{split} Y &= Y_{p\text{-tag}} + Y_{e\text{-tag}} \\ \epsilon' &= (\epsilon'_{p\text{-tag}} + \epsilon'_{e\text{-tag}})/2 \\ \text{b is the background fraction combined for} \\ p\text{- and e-tag.} \end{split}$$

 $\gamma^* \gamma$ based Cross Section: $\frac{d\sigma_{\gamma^*\gamma}}{d|\cos\theta^*|} = \frac{d^3\sigma_{ee}}{dWd|\cos\theta^*|dQ^2} \frac{f}{2\frac{d^2L_{\gamma^*\gamma}}{dWdQ^2}(1+\delta)(\varepsilon/\varepsilon')\varepsilon'}$

δ: radiative correction. ε: efficiency corrected for φ* dependence. f: unfolding effect for Q².

Integrated cross section as a function of W in nine Q^2 bins

Peaks corresponding to the $f_2(1270)$ and $f_0(980)$ are evident.

Cross section formalism

Waves: S, D₀, D₁, and D₂, contribute (W<1.5GeV) Differential cross section for $\gamma^*\gamma \rightarrow \pi^0\pi^0$ is given by [3]. ϕ^* -dependent

$$\frac{d\sigma}{d\Omega} = \sum_{n=0}^{2} t_n \cos n\varphi *$$

 ϕ^* -integrated

 $\frac{d\sigma}{4\pi d |\cos \mathcal{P}^*|} = |\operatorname{SY}_0^0 + \operatorname{D}_0 \operatorname{Y}_2^0|^2 + |\operatorname{D}_2 \operatorname{Y}_2^2|^2 + 2\varepsilon_0 |\operatorname{D}_1 \operatorname{Y}_2^1|^2$

$$\begin{split} Y_0^0 &= \sqrt{\frac{1}{4\pi}} , \\ Y_2^0 &= \sqrt{\frac{5}{16\pi}} (3\cos^2\theta^* - 1) , \\ |Y_2^1| &= \sqrt{\frac{15}{8\pi}} \sin\theta^* \cos\theta^* , \\ |Y_2^2| &= \sqrt{\frac{15}{32\pi}} \sin^2\theta^* . \end{split}$$

[3] I.F. Ginzburg, A. Shiller and V.G. Serbo, Eur. Phys. J, C 18, 731-746 (2001); and private communication with V.G. Serbo.

 $t_{0} = |SY_{0}^{0} + D_{0}Y_{2}^{0}|^{2} + |D_{2}Y_{2}^{2}|^{2} + 2\varepsilon_{0}|D_{1}Y_{2}^{1}|^{2}$ $t_{1} = 2\varepsilon_{1} \operatorname{Re}((D_{2}|Y_{2}^{2}|-SY_{0}^{0}-D_{0}Y_{2}^{0})D_{1}^{*}|Y_{2}^{1}|)$

 $\varepsilon_0, \varepsilon_1$ are variables that depend on $x = \frac{q_1 \cdot q_2}{q_1 \cdot q_2}$

 $p_1 \cdot p_2$

 $t_2 = -2\varepsilon_1 \operatorname{Re}\left(D_1^* | Y_2^1 | (SY_0^0 + D_0^0 Y_2^0) \right)$

Parameterization of amplitudes

S and D_i amplitudes:

 $S = A_{f_0(980)}e^{i\phi_{f0}} + B_S e^{i\phi_{BS}},$ $D_i = \sqrt{r_i(Q^2)}A_{f_2(1270)}e^{i\phi_{f2Di}} + B_{Di}e^{i\phi_{BDi}}$

Where $r_i(Q^2)$ is fraction of $f_2(1270)$ contribution in Di wave $\begin{aligned} \text{Transition Form Factors} \\ A_{f_0(980)} &= F_{f0}(Q^2) \sqrt{1 + \frac{Q^2}{M_{f_0}^2} \frac{\sqrt{8\pi\beta_{\pi}}}{W} \frac{g_{f_0\gamma\gamma}g_{f_0\pi\pi}}{16\sqrt{3\pi}} \frac{1}{D_{f_0}}} \\ A_R^J(W) &= F_R(Q^2) \sqrt{1 + \frac{Q^2}{M_R^2}} \sqrt{\frac{8\pi(2J+1)m_R}{W}} \\ &\times \frac{\sqrt{\Gamma_{\text{tot}}(W)\Gamma_{\gamma\gamma}(W)\mathcal{B}(\pi^0\pi^0)}}{m_R^2 - W^2 - im_R\Gamma_{\text{tot}}(W)}} \end{aligned}$

Parameterizations of the f0(980) and f2(1270) is given.

2015/9/24

Fit strategy for TFFS

Fundamental limitation:

 φ^* -integrated differential cross section, So, only 3 out of S, D₀, D₁, and D₂ are independent.

Procedure (due to limited statistics) :

- 1st fit φ^* -dependent cross section(but integrated over Q²) to extract $r_1(\overline{Q^2})$ with $\overline{Q^2} = 9.6 \text{GeV}^2$ as
 - $r_1(\overline{Q^2}) = 0.15 + 0.05 0.03.$

2nd fit φ^* -integrated cross section with $r_1(\overline{Q^2})$.

Fit ϕ^* -integrated cross section

- To extract Q² dependence of TFFs:
 - Float $F_{f0(980)}(Q^2)$, $F_{f2(1270)}(Q^2)$, and $r_0(Q^2)$ in each Q^2 bin.

• Assume
$$r_1(Q^2) = r_{1ave}(Q^2/Q_{ave}^2)^d = 0.15^*(Q^2/9.6)^d$$

then $D_1 = \sqrt{0.15 \left(\frac{Q^2}{9.6}\right)^d} A_{f2(1270)} \exp(i\Phi_{f2D1})$, denoted as r_1 fit.

Fitted results on angular distributions

Angular dependence of the cross section in the indicated W bin and its results of r1 fit at $Q^2=5.5$ and 7.0 GeV². (example)

Black: Total, Green $|S|^2$, Blue: $|D_0|^2$, Pink: $|D_2|^2$

D

TFF Results

- hel.-2 TFF of $f_2(1270)$ agrees with the prediction by Ref.[4] and Ref. [5].
- hel.-0 and 1 TFF, a factor of 1.5 2 smaller than the prediction by Ref.[4].
- TFF of $f_0(980)$: agree well with the prediction by Ref.[4] for Q²<10GeV²

Ref: [4] G.A. Schuler, F.A. Berends and R. van Gulik, Nucl. Phys. B 523, 423 (1998). Based on application of heavy quark approximation to light quarks
[5] V. Pascalutsa, V. Pauk and M. Vanderhaeghen, Phys. Rev. D 85, 116001 (2012). Based on sum rules

Systematic uncertainties to cross section and TFFs

Source	Uncertainty $(\%)$
Tracking	1
Electron-ID	1
Pion-pair detection (for two π^0 's)	7.2
Kinematical selection	2
Geometrical acceptance	2
Trigger efficiency	3
Background effect for the efficiency	2
φ^* dependence	1 - 16
Background subtraction	1 - 23
Unfolding for Q^2	2
Radiative correction	3
Luminosity function	4
Integrated luminosity	1.4
Total	11 - 26

Uncertainties for cross section:

- The value indicated in rages depending on W, |cosθ*|, and Q².
- Uncertainties in total: 11 26%

Uncertainty sources to estimate the error size for TFFs

- Overall normalization (Q² independent)
 - from Br($\gamma\gamma$) errors: $\pm 15\%$ for f₂(1270); +32%, -30% for f₀(980).
- Individual items (Q² dependent)
 - cross section 11-26%
 - Fitting W-range 0.7-1.5GeV to 0.65-1.4GeV or to 0.75-1.6GeV
 - Mass of $f_0(980)$ 980 ±20MeV
 - $g_{f0\pi\pi}$ 1.82±0.03+0.24-0.17(GeV)
 - rR 3.62±0.03(Gev/c)⁻¹
 - more with smaller uncertainties

 Q^2 dependent error of TFF is shown as error bars in the figures on page 13.

Summary

- First measurement for $\sigma(\gamma^*\gamma \to \pi^0\pi^0)$ with Q² up to 30 GeV².
- The differential cross section is fitted with partial-wave amplitudes.
- The azimuthal and polar angle dependence shows large (small but non-zero) contribution for the $f_2(1270)$ hel.-0 (hel.-1) component.
- The transition form factors (**TFFs**) of $f_0(980)$ and $f_2(1270)$ are measured for Q^2 up to 30 GeV².
 - hel.-2 TFF of f₂(1270) agrees well with the prediction of Ref.[4] and with one of two predictions of Ref. [5].

That of the hel.-0 and -1 **TFF** are about a factor of 1.5 - 2smaller than the prediction of Ref.[4].

> The Q² dependence for **TFF** of $f_0(980)$ agree well with the prediction of Ref.[4] for Q²<10GeV², but less steeper for Q²>10GeV².

Thank you !