

Precise measurement of e⁺e⁻ -> K⁺K⁻ at SND

(in energy range from 1.05 to 2.0 GeV, preliminary results)

Konstantin Beloborodov Novosibirsk State University Budker Institute of Nuclear Physics

International Workshop on e+ e- collisions from Phi to Psi 2015 September 23-26, 2015

VEPP-2000 complex

Maximum c.m. energy is 2 GeV, achieved luminosity is $L = 2 \cdot 10^{31} \text{ 1/cm}^2 \text{s}$ at $\sqrt{\text{s}} = 2 \text{ GeV}$ Unique optics, "round beams", allows to reach high luminosity Experiments with two detectors, CMD-3 and SND, started by the end of 2010

Spherical Neutral Detector (SND)

- 1 beam pipe
- 2 tracking system
- 3 aerogel
- 4 Nal(Tl) crystals
- 5 phototriodes
- 6 muon absorber
- 7–9 muon detector
- 10 focusing solenoid

Advantages compared to previous SND:

- new system Cherenkov counter (n=1.05, 1.13)
 e/π separation E<450 MeV
 - π/K separation E<1 GeV
- new drift chamber better tracking

Aerogel counters: design

Tests with aerogel counter (n=1.13) on experimental events

$e+e- \rightarrow K+K-$ in previous experiments

Selection cuts

Background sources

- 1. Collinear tracks background:
 - Cosmic events
 - Charged two-body processes $(e^+e^-, \mu^+\mu^-, \pi^+\pi^-, p^+p^-)$
- 2. Non-Collinear tracks background:
 - Charged multi-body processes ($\pi^+\pi^-\pi^0$, $\pi^+\pi^-\pi^0\pi^0$, KK π etc.)
 - Two-photon processes $(e^+e^-, \mu^+\mu^-, \pi^+\pi^-)$

Subtraction of non-collinear backgrounds

Number of events of non-collinear backgrounds is estimated using the corner regions, Scaled and subtracted from number of events of central region.

Subtraction of collinear backgrounds

Luminosity

Detection efficiency

Data approximation: model

$$\sigma_{K^+K^-}(s) = \frac{\pi\alpha^2\beta^3}{3s} |F_K|^2$$

$n^{2S+1}l_J$	I=1	I=0	I=0
$1^{3}S_{1}$	ρ(770)	φ(1020)	ω(783)
$1^{3}D_{1}$	ρ(1700)	_	ω(1650)
$2^{3}S_{1}$	ρ(1450)	φ(1680)	ω(1420)

Cross section

Cross section

Ratio of the BABAR cross section to the SND fit

Systematic uncertainties (preliminary)

Source	1.2 GeV < 2E0 < 1.75 GeV	2E0 > 1.75 GeV
Luminosity	0.9 %	0.9 %
Selection cuts	2.1 %	2.1 %
Background subtraction	1%	<10 %
Total	2.5 %	10 %

Conclusion

- ✓ The e+e- \rightarrow K+K- cross section has been measured
- ✓ Aerogel identification system is ready for measurements of processes with kaons
- ✓ The cross section
 - ➤ is used as contribution to R
 - ➤ is used for exited states parameters measurements
 - ➤ is not contradict to previous precise results of BABAR