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New Physics searches with muons: theoretical review *
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Abstract: We summarize current issues related to New Physics searches with muons. We focus on the ratio of

magnetic moments of the muon and the proton, needed for the muon gµ−2 determination; on using the bound-electron

g−2 to help independently check the persisting discrepancy between the measured gµ−2 and the Standard Model;

and on the bound-muon decay as a background for the muon-electron conversion.
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1 Introduction

Muon is a powerful probe of New Physics thanks to
its long lifetime and a relatively large mass [1, 2]. It
can be produced abundantly, so that even its very rare
decays can be searched for [3].

There is a persistent discrepancy [4] between the mea-
sured value of the muon anomalous magnetic moment
g− 2 [5] and the Standard Model prediction. A recent
summary of this puzzle can be found in [6]. On the
theory side, the hadronic contribution remains the topic
of very active research. Both the vacuum polarization
and hadronic light-by-light [7, 8] effects are being scruti-
nized. New experiments are being prepared in Fermilab
[9] and J-PARC [10] to remeasure the muon g−2. The
Brookhaven experiment E821 found

aµ =
gµ−2

2
= 116592080(63) ·10−11, (1)

achieving a precision of 0.54 part per million (ppm) and
improving the result of earlier experiments at CERN by
a factor of 14 [11]. The new efforts hope to reach 0.14
ppm [9] or better.

In parallel, a new measurement of the muonium hy-
perfine splitting (HFS) is being prepared at J-PARC [12].
It is necessary in order to extract the muon g−2 from the
measurements of the anomalous precession of the muon
spin [9, 10]. We review this topic in Section 2.

Electron’s g−2 has been measured with a much higher
precision than that of the muon [13]. However, since the
electron is about 207 times lighter than the muon, it is
43 000 times less sensitive to the New Physics. Measure-
ments of the electron g− 2, both free and bound, are
presently used to precisely determine the fundamental
constants me and α. However, if α can be determined

independently, the precision of the electron g−2 measure-
ments may eventually allow us to probe New Physics, in
a manner competitive to the muon.

At present, the best determination of α independent
of the electron g−2 relies on a combination of the Ryd-
berg constant [14] with the ratio of the electron mass to
the Planck constant [15]. However, α enters the proper-
ties of many other systems that involve electromagnetic
interactions and can be determined from any such sys-
tem, provided it can be precisely characterized both ex-
perimentally and theoretically [16]. A recently proposed
approach involves the g factor of a bound electron [17].
We describe some related developments in Section 3.

The most important current search for New Physics
with muons involves the lepton-flavor violating (LFV)
decay µ→ eγ [18]. Other LFV processes will be searched
for by expriments now under construction: µ→ eee [19]
and the muon-electron conversion near a nucleus. For the
latter, there are three new experimental efforts, DeeMe
[20], Mu2e [21], and COMET [22]. In Section 4 we dis-
cuss the recent progress in the description of the decay
of a muon bound in at atom. High-energy electrons pro-
duced in this decay are a background for the conversion
searches.

2 Magnetic moment of a bound muon

Muonium is a bound state of an electron and an anti-
muon, both spin 1/2 particles. The lowest energy state
is a total spin 0 singlet. The difference of its energy with
the spin 1 triplet is called the hyperfine splitting, ∆EHFS.
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2.1 Extraction of the muon to proton magnetic
moment ratio

We consider the electron and the muon in a magnetic
field oriented along the z direction, ~B = (0,0,B). The
interaction Hamiltonian is

H =−(~µe+~µµ) · ~B+∆EHFS
~I · ~J, (2)

where ~I and ~J are muon and electron spins for which we
have (

~I+ ~J
)2

=

{
2 triplet

0 singlet

=
3

2
+2~I · ~J

~I · ~J =

{
1
4

triplet

− 3
4

singlet
.

We denote the magnetic moments by

~µe · ~B = ge
−eB
2me

Jz ≡−keJz

~µµ · ~B = gµ
eB

2mµ

Iz ≡ kµIz, (3)

and introduce δk =
ke−kµ
∆EHFS

and x =
ke+kµ

∆EHFS
. With this

notation the Hamiltonian (2) in the basis |11〉, |1−1〉,
|10〉, |00〉 (where the first number denotes the total spin
and the second is its z projection) can be written as

H =
∆EHFS

2


1
2

+δk
1
2
−δk

1
2

x

x − 3
2

 .
We find the eigenvalues 1

2
±δk and − 1

2
±
√

1+x2 in units
of ∆EHFS/2.

Due to the mass difference, the electron energy in the
magnetic field is much larger than the corresponding en-
ergy for the muon, ke� kµ. Also, for moderate field B,
ke�∆EHFS. The difference of the two eigenvalues that
grow with B is

ν12 =
∆EHFS

2
+
ke−kµ

2
−∆EHFS

2

√
1+x2

= −kµ+
∆EHFS

2

(
1+x−

√
1+x2

)
.

The difference of the two remaining ones is

ν34 =
∆EHFS

2
− ke−kµ

2
+

∆EHFS

2

√
1+x2

= kµ+
∆EHFS

2

(
1−x+

√
1+x2

)
,

so that

ν12 +ν34 = ∆EHFS,

ν34−ν12 = 2kµ+∆EHFS

(√
1+x2−x

)
.

The expressions for the transition frequencies are known
as the Breit-Rabi formula [23]. In addition to ν12 and ν34,
also the Larmor frequency of the proton is measured,

2µpB= νp. (4)

This equation allows one to eliminate the relatively
poorly known B when the ratio

µµ

µp
is calculated from

the measured frequencies.
Before this ratio is used in the measurement of the

(free) muon anomalous magnetic moment we need to cor-
rect the g-factor in Eq. (3) for binding effects,

gµ→ gµ

(
1− α

2

3
+
α2

2

me

mµ

+ . . .

)
. (5)

In the limit of me→ 0 the size of muonium becomes infi-
nite, and we expect that binding corrections to the muon
g-factor to vanish as the muon will be unaffected by the
electron at infinity. However, the binding corrections in
Eq. (5) do not vanish in the limit me→ 0. The explana-
tion of this surprising feature is that the magnetic field
is treated as a perturbation in the two-particle Hamil-
tonian describing the muon-electron system [24]. When
the mass of the electron goes to zero and the magnetic
field is kept constant, the interaction energy of the muon
and the electron spins with the magnetic field surpasses
the electron kinetic energy. In these circumstances the
magnetic field cannot be treated as a perturbation to the
two-particle Hamiltonian. This is why the limit me→ 0
is nontrivial. In practical applications, the electron ki-
netic energy in muonium, meα

2/2, is much larger than
the dipole magnetic interaction and Eq. (5) remains cor-
rect.

The magnetic field is measured using nuclear mag-
netic resonance (NMR), with the help of the standard
H2O probes [25]. This is done by measuring the Larmor
frequency ωL = γIB, where γI is the gyromagnetic ratio
of the nucleus used in the probe. In experiments like
gµ−2, we are interested in defining the field in terms of
the free proton magnetic moment B=ωp/γp. This means
that we need a ratio of the γI to the γp. For spherical wa-
ter sample, this ratio was measured with an accuracy of
0.014 ppm. Experiment [26] measured ratio of the proton
g factor in hydrogen to the electron g factor in hydrogen.
They applied binding corrections to transform measured
ratio of bound g-factors to the respective ratio for the
free particles. Another experiment [27] measured the ra-
tio of the g-factor of a proton in water to the electron
g-factor in hydrogen. They also applied binding correc-
tions to convert the electron g-factor in hydrogen to the
free electron magnetic moment.
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We see that the binding corrections to g-factors en-
ter in a variety of ways in the determination of the muon
gµ−2. In the next Section we discuss in more detail their
role in the determination of fundamental constants.

3 Magnetic moment of a bound electron

Precise measurement of the magnetic moment of an
electron bound to a nucleus has recently been used to
determine the electron mass [28]. In a constant mag-
netic field, the electron mass me can be calculated from
the ratio of the cyclotron frequency νcyc to the precession
frequency of the electron spin νL

me =
g

2

e

q

νcyc

νL
mion, (6)

where q is the charge of the heavy ion with mass mion.
Apart from the electron mass, the only unknown quan-
tity is the g-factor. It can be calculated in QED [29, 30]
as an expansion in α

π
and Zα. The g-factor of a particle

bound in a Coulomb field of a point-like nucleus with
charge Z was calculated in 1928 by G. Breit [31]. In the
ground state of a hydrogenlike ion, the electron g-factor
equals

gBreit =
2

3

(
1+2

√
1−(Zα)

2

)
. (7)

This results is valid to all orders in Zα but it neglects
radiative corrections, the finite nucleus size, and recoil
corrections.

Radiative corrections to the electron g-factor of the
order

(
α
π

)n
(Zα)

0
[32–35] are the same as for the free

electron, where results are currently known up to
(
α
π

)5
order [36]. Corrections of type

(
α
π

)n
(Zα)

2
are universal

for n > 0, and were calculated by Grotch [37] (see also
[38]). Analytical results were also obtained for

(
α
π

)
(Zα)

4

[29] and
(
α
π

)2
(Zα)

4
[30]. Higher order corrections are

only known numerically for the one loop case [39–41].
Recoil corrections were calculated in [42–44].

The missing corrections of the order of
(
α
π

)2
(Zα)

5
are

now the limiting factor preventing further improvement
of the electron mass determination. Authors of [28] sug-
gested that these unknown higher order effects can be
estimated by combining measurements of the electron g-
factor for carbon (Z = 6) and silicon (Z = 14). This is
done by postulating that experimentally measured value
of the electron g-factor is

gexp(Z) = gth(Z)+
(α
π

)2

(Zα)
5
b50, (8)

where gth(Z) contains all known contributions. The coef-
ficient b50 can be determined from measurements. From
(6) we obtain

gexp(Z) = 2(Z−1)
me

mion

Γ(ion) (9)

where we introduced Γ = vL
vcyc

. Writing (9) and (8) for

Z = 6 and Z = 14 we obtain a system of two linear equa-
tions that can be solved for the unknown me and b50.

For completness we summarize here all input values
needed for the calculation of the electron mass [28]

gth(6) = 2.0010415901798(47), (10)

gth(14) = 1.995348957931(81),

m12C5+ = 11.9972576802909(11)u,

m28Si13+ = 27.9698005945(5)u,

α = 0.0072973525698(24),

Γ
(

12C5+
)

= 4376.21050089(11)(7),

Γ
(

28Si13+
)

= 3912.86606499(13)(13).

The last number is taken from [45], since the value given
in [28] contains a misprint. The final result for the coef-
ficient b50 reads

b50 =−4.0(5.1). (11)

The higher order terms in the expansion in Zα may con-
tain logarithms of Zα. These potentially large correc-
tions limit current accuracy of determination of the elec-
tron mass from the bound g-factor measurements.

Further progress in this area can be achieved provided
that the coefficient b50 is calculated from QED rather
than determined form experiments.

Combination of measurements for different ions with
theoretical calculations will lead to improvements in de-
termination of fundamental constants. Possibly not only
the electron mass but also α can be precisely measured
in bound electron g-factor experiments [17]. Such a re-
sult, combined with improved measurements of the gy-
romagnetic ratio of the free electron, can be used to in-
dependently test the possible New Physics contribution
to muon g−2.

4 Muon-electron conversion and the
muon decay in orbit

Bound muon decay is a decay of the muon into an
electron and two neutrinos µ−→ e−νeνµ in the presence
of a nucleus with charge Ze and mass mN . Typically
the initial muon occupies the ground energy state. The
maximal electron energy Ee can almost reach the muon
mass, mµ,

Emax =mµ+Eb−Erec, (12)

where the binding energy is Eb ' −mµ
(Zα)2

2
and recoil

energy is Erec'
m2
µ

2mN
. The limiting energy Emax is larger

than in the free muon decay because the muon, electron,
and the nucleus can transfer some momentum among
each other by exchanging Coulombic photons. The recoil
energy is the kinetic energy of the nucleus at maximum
momentum transfer, ~q 2 =m2

µ.
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The high-energy part of the spectrum,
mµ

2
. Ee <

Emax, can be described with the help of the perturbative
expansion in Zα [46–48],

mµ

Γ0

dΓ

dE
=
∑
ijk

Bijk∆
i(πZα)j

(α
π

)k
, (13)

where ∆ = Emax−E
mµ

; Γ0 =
G2
Fm

5
µ

192π3 is the free-muon de-

cay rate; and GF is the Fermi constant [49]. Powers of α
π

parametrize radiative corrections calculated in [47]. This
expansion is possible because the momentum transfer to
the nucleus in the high-energy part of the spectrum is
much larger than the typical bound muon momentum
mµZα.

The leading term in the expansion cannot be calcu-
lated in the Born approximation [50], i.e. when the elec-
tron is described by a plain wave and the muon is de-
scribed by a non-relativistic wave function. To obtain the
leading coefficient, the first relativistic correction to the
muon wave function must be taken into account. When
the muon exchanges a large momentum (~q2 ∼m2

µ) with
the nucleus, the first relativistic correction can be of the
same order in Zα as the non-relativistic term obtained
as a solution to the Schrödinger equation. On the other
hand, if the muon momentum is small, on the order of
mµZα, the electron must transfer a large momentum to
the nucleus. This can be described as the first order
perturbation due to the Coulomb potential to the elec-
tron wave function. A similar reasoning is applied in the
relativistic description of the atomic photoelectric effect
[51]. The amplitude describing the decay in orbit (DIO)
can be graphically represented as a sum of two Feynman
diagrams shown in Figure 1.

µ e

νν

e µ e

νν

µ

Fig. 1. Feynman diagrams representing the tree
level contributions to the high-energy region of
the electron spectrum in the muon decay in orbit.

When the electron energy approaches half of the
muon mass, this expansion starts to diverge. This is
illustrated by the red (dashed) line in Fig. 2. This di-
vergence is a sign that the perturbative expansion breaks
down, as the central region mµZα . Ee .

mµ

2
is domi-

nated by exchanges of soft photons that transfer small
amounts of momentum, typically on the order of mµZα.
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Fig. 2. Muon DIO spectrum for Z = 1. The red
(dashed) line denotes perturbative expansion used
in the high-energy region. The blue (solid) line
is the spectrum obtained as a convolution of the
tree level free muon spectrum convoluted with the
shape function.

Before we discuss the central region of the spectrum,
we mention that the radiative corrections to the term
B550 in (13) have been recently calculated [47]. Exam-
ples of diagrams calculated in that study are shown in
Figure 3.

µ e

νν
k

µ+k e+k

µ

e

νν

k

µ+k

µ e

ννk

µ+k e+k µ e

νν
k

µ+k e+k

Fig. 3. Virtual corrections to the DIO spectrum
near the end point (examples).

B550 is the leading term in the expansion around the
endpoint, therefore radiative corrections are enhanced
by emissions of soft and collinear photons. Soft photons
generate singular factors like ln∆; fortunately, terms
containing them can be exponentiated [52]. Collinear
photons produce large logarithms of the ratio of the
muon and the electron masses.

Also important are the vacuum polarization correc-
tions. In contrast to the soft and collinear photons, they
increase the number of the DIO events by strengthening
the Coulomb interaction at short distances. In [47] it
was shown that

B550→B550

(
∆

α
π
δS +

α

π
δH

)
, (14)

where δH = 6.31− 26
15

ln
mµ

me
, and δS = 2ln

2mµ

me
− 2 is a

soft correction. This result is significant for experiments
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searching for the muon electron conversion. The signa-
ture of this exotic process is a decay of a muonic atom
into a mono-energetic electron with energy Emax, and a
nucleus. A high-energy electron produced in the DIO
can mimic the signal. Fortunately, the corrections (14)
decrease the background by around 15% [47]. The high-
energy region of the electron spectrum will be determined
in the next generation of conversion searching experi-
ments, COMET in J-PARC [53] and Mu2e in Fermilab
[54].

Finally, we discuss the central region, where an accu-
rate prediction for the DIO spectrum requires a resum-
mation of Coulomb photons. The dominant effect that
modifies the DIO spectrum in this region is the Doppler
smearing due to the motion of the muon in the atom. To
quantify it, we consider the ground state wave function
in momentum space,

ψ (~q) =
8πZαmµΨ(0)

[~q2 +(Zαmµ)2]
2 , (15)

where Ψ(0) =

√
(Zαmµ)

3

π
. It can be interpreted as a mo-

mentum distribution of the muon bound to the nucleus.
Muon motion in an atom can be taken into account by
the shape function formalism [55, 56]. The shape func-
tion was first defined in QCD to describe heavy quarks
decays [57–63]. For the muon DIO, it can be interpreted
as a probability density distribution function of the muon
momentum along the electron direction. As was calcu-
lated in [55],

S(λ) =
8m5

µZ
5α5

3π
[
λ2 +m2

µZ
2α2
]3 . (16)

This result resembles the form of the wave function (15).
The typical size of the region affected by the shape func-
tion is characterized by λ∼ Zαmµ. The DIO spectrum
is obtained as a convolution of the free muon spectrum

dΓfree

dx
=
G2
Fm

5
µ

192π3
x2 (6−4x)

x=
2Ee
mµ

0<x≤ 1, (17)

with the shape function (16)

dΓ

dEe
=

∫
dλS(λ)

dΓfree

dz

dz

dEe

∣∣∣∣
z→z(λ)

. (18)

The spectrum obtained in this way is depicted in Fig. 2
with the blue (solid) line. The shape function formalism
breaks down in the high-energy region because it neglects
the hard Coulombic photons exchanged between the nu-
cleus and the muon and/or the electron.

Both the leading term in the perturbative expansion
and the shape function formalism describe the DIO spec-
trum in two separate energy region. Within the current
theory, these two region do not overlap. Higher order
corrections need to be calculated in order to obtain a
smooth function, analytically describing the spectrum
at all energies. Although such a description is available
from numerical calculations [64], an analytic result will
be a better basis for the determination of radiative cor-
rections due to selfinteractions of the muon-electron line.
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