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Measuring the Leading Order Hadronic contribution to the muon g-2
in the space-like region
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Abstract: Recently a novel approach to determine the leading hadronic corrections to the muon g-2 has been

proposed. It consists in a measurement of the effective electromagnetic coupling in the space-like region extracted

from Bhabha scattering data. The new method may become feasible at flavor factories, leading to an alternative

determination, possibly competitive with the accuracy of the present evaluations based on the dispersive approach

via time-like data.
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1 Introduction

In a recent paper [1], we explored the possibility to
evaluate the leading-order (LO) hadronic contribution
to the muon anomalous magnetic moment aHLO

µ , mea-
suring the effective running electromagnetic coupling in
the space-like region.

The discrepancy between experiment and the Stan-
dard Model (SM) prediction of the muon anomalous
magnetic moment aµ has kept the hadronic corrections
under close scrutiny for several years [2–5]: the hadronic
uncertainty dominates that of the SM value and is com-
parable with the experimental one. When the new re-
sults from the g-2 experiments at Fermilab and J-PARC
will reach the unprecedented precision of 0.14 parts per
million (or better) [6–8], the uncertainty of the hadronic
corrections will become the main limitation.

An intense research program is under way to improve
the evaluation of the leading order (LO) hadronic con-
tribution to aµ, due to the hadronic vacuum polarization
correction to the one-loop diagram [9, 10], as well as the
next-to-leading order (NLO) hadronic one. The latter is
further divided into the O(α3) contribution of diagrams
containing hadronic vacuum polarization insertions [11],
and the leading hadronic light-by-light term, also of
O(α3) [3, 12, 13]. Even the next-to-next-to leading or-
der (NNLO) hadronic contributions have been studied:
insertions of hadronic vacuum polarizations were com-
puted in [14], while hadronic light-by-light corrections
have been estimated in [15].

The evaluation of the hadronic LO contribution aHLO
µ

involves long-distance QCD for which perturbation the-
ory cannot be employed. However, using analyticity and
unitarity, it was shown long ago that this term can be

computed via a dispersion integral using the cross sec-
tion for low-energy hadronic e+e− annihilation [16]. At
low energy this cross-section is highly fluctuating due to
resonances and particle production threshold effects.

An alternative determination of aHLO
µ can be obtained

measuring the effective electromagnetic coupling in the
space-like region extracted from Bhabha (e+e−→ e+e−)
scattering data, as detailed in Ref. [1]. A method to de-
termine the running of the electromagnetic coupling in
small-angle Bhabha scattering was proposed in [17] and
applied to LEP data in [18]. As vacuum polarization in
the space-like region is a smooth function of the squared
momentum transfer, the accuracy of its determination is
only limited by the statistics and by the control of the
systematics of the experiment. Also, as at flavor factories
the Bhabha cross section is strongly enhanced in the for-
ward region, the space-like determination of aHLO

µ may
not be limited by statistics and, although challenging,
may become competitive with standard results obtained
with the dispersive approach via time-like data.

2 Theoretical framework

The leading-order hadronic contribution to the muon
g-2 is given by the well-known formula [5, 16]

aHLO

µ =
α

π2

∫ ∞

0

ds

s
K(s) ImΠhad(s+ iε), (1)

where Πhad(s) is the hadronic part of the photon vacuum
polarization, ε> 0,

K(s) =

∫ 1

0

dx
x2(1−x)

x2 +(1−x)(s/m2
µ)

(2)
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is a positive kernel function and mµ is the muon mass.
As the total cross section for hadron production in low-
energy e+e− annihilations is related to the imaginary
part of Πhad(s) via the optical theorem, the dispersion
integral in Eq. (1) is computed integrating experimental
time-like (s> 0) data up to a certain value of s [3, 19, 20].
The high-energy tail of the integral is calculated using
perturbative QCD [21].

Alternatively, if we exchange the x and s integrations
in Eq. (1) we obtain [22]

aHLO

µ =
α

π

∫ 1

0

dx(x−1)Πhad[t(x)] , (3)

where Πhad(t) = Πhad(t)−Πhad(0) and

t(x) =
x2m2

µ

x−1
< 0 (4)

is a space-like squared four-momentum. If we invert
Eq. (4), we get x = (1−β)(t/2m2

µ), with β = (1 −
4m2

µ/t)
1/2, and from Eq. (3) we obtain

aHLO

µ =
α

π

∫ 0

−∞
Πhad(t)

(
β−1

β+1

)2
dt

tβ
. (5)

Equation (5) has been used for lattice QCD calculations
of aHLO

µ [23]; while the results are not yet competitive
with those obtained with the dispersive approach via
time-like data, their errors are expected to decrease sig-
nificantly in the next few years [24].

The effective fine-structure constant at squared mo-
mentum transfer q2 can be defined by

α(q2) =
α

1−∆α(q2)
, (6)

where ∆α(q2) = −ReΠ(q2). The purely leptonic part,
∆αlep(q2), can be calculated order-by-order in perturba-
tion theory – it is known up to three loops in QED [25]
(and up to four loops in specific q2 limits [26]). As
ImΠ(q2) = 0 for negative q2, Eq. (3) can be rewritten
in the form [27]

aHLO

µ =
α

π

∫ 1

0

dx(1−x)∆αhad[t(x)] . (7)

Equation (7) can be evaluated by measuring the effec-
tive electromagnetic coupling in the space-like region (see
also [10]), for instance from Bhabha scattering data.

A few considerations about Eq. (7) are in order here:
in Fig. 1 (left) the integrand (1−x)∆αhad[t(x)] is plot-
ted, using the output of the routine hadr5n12 [28] for
∆αhad(t). The range x ∈ (0,1) corresponds to t ∈
(−∞,0). The peak of the integrand occurs at xpeak '
0.914 where tpeak ' −0.108 GeV2 and ∆αhad(tpeak) '

7.86×10−4 (see Fig. 1 (right)). Such relatively low t val-
ues can be explored at e+e− colliders with

√
s around or

below 10 GeV (the so called “flavor factories”).
Depending on s and θ, the integrand of Eq. (7) can

be measured in the range x ∈ [xmin,xmax], as shown in
Fig. 2 (left). Note that to span low x intervals, larger
θ ranges are needed as the collider energy decreases.
In this respect,

√
s ∼ 3 GeV appears to be very con-

venient, as an x interval [0.30,0.98] can be measured
varying θ between ∼ 2◦ and 28◦. It is also worth re-
marking that data collected at flavor factories, such as
DAΦNE (Frascati), VEPP-2000 (Novosibirsk), BEPC-II
(Beijing), PEP-II (SLAC) and SuperKEKB (Tsukuba),
and possibly at a future high-energy e+e− collider, like
FCC-ee (TLEP) [29] or ILC [30], can help to cover dif-
ferent and complementary x regions. Furthermore, given
the smoothness of the integrand, values outside the mea-
sured x interval may be interpolated with some theoret-
ical input.

3 ∆αhad(t) from Bhabha scattering data

The hadronic contribution to the running of α in the
space-like region, ∆αhad(t), can be extracted comparing
Bhabha scattering data to Monte Carlo (MC) predic-
tions. The LO Bhabha cross section receives contribu-
tions from t- and s-channel photon exchange amplitudes.
At NLO in QED, it is customary to distinguish correc-
tions with an additional virtual photon or the emission
of a real photon (photonic NLO) from those originated
by the insertion of the vacuum polarization corrections
into the LO photon propagator (VP). The latter goes
formally beyond NLO when the Dyson resummed pho-
ton propagator is employed, which simply amounts to
rescaling the α coupling in the LO s- and t-diagrams by
the factor 1/(1−∆α(q2)) (see Eq. (6)). In MC codes,
e.g. in BabaYaga [31], VP corrections are also applied to
photonic NLO diagrams, in order to account for a large
part of the effect due to VP insertions in the NLO con-
tributions. Beyond NLO accuracy, MC generators con-
sistently include also the exponentiation of (leading-log)
QED corrections to provide a more realistic simulation of
the process and to improve the theoretical accuracy. We
refer the reader to Ref. [32] for an overview of the status
of the most recent MC generators employed at flavor fac-
tories. We stress that, given the inclusive nature of the
measurements, any contribution to vacuum polarization
which is not explicitly subtracted by the MC generator
will be part of the extracted ∆α(q2). This could be the
case, for example, of the contribution of hadronic states
including photons (which, although of higher order, are
conventionally included in aHLO

µ ), and that of W bosons
or top quark pairs.

The analytic dependence of the MC Bhabha predic-
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Fig. 1. Left: The integrand (1−x)∆αhad[t(x)]×105 as a function of x and t. Right: ∆αhad[t(x)]×104.
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Fig. 2. Left: Ranges of x values as a function of the electron scattering angle θ for three different center-of-mass
energies. The horizontal line corresponds to x= xpeak ' 0.914. Right: Bhabha differential cross section obtained
with BabaYaga [31] as a function of θ for the same three values of

√
s in the angular range 2◦<θ< 90◦.
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tions on α(t) (and, in turn, on ∆αhad(t)) is not trivial,
and a numerical procedure has to be devised to extract
it from the data. In formulae, we have to find a function
α(t) such that

dσ

dt

∣∣∣
data

=
dσ

dt

(
α(t),α(s)

)∣∣∣
MC
, (8)

where we explicitly kept apart the dependence on the
time-like VP α(s) because we are only interested in
α(t). Being the Bhabha cross section in the forward re-
gion dominated by the t-channel exchange diagram, we
checked that the present α(s) uncertainty induces in this
region a relative error on the θ distribution of less than
∼ 10−4 (which is part of the systematic error).

We propose to perform the numerical extraction of
∆αhad(t) from the Bhabha distribution of the t Mandel-
stam variable. The idea is to let α(t) vary in the MC
sample around a reference value and choose, bin by bin
in the t distribution, the value that minimizes the dif-
ference with data. The procedure is detailed in Ref. [1]
and here we only remark that the algorithm does not
assume any simple dependence of the cross section on
α(t), which can in fact be general, mixing s, t channels
and higher order radiative corrections, relevant (or not)
in different t domains.

In order to check our procedure, we performed a
“pseudo-experiment”, generating pseudo-data using the
parameterization ∆αIhad(t) of refs. [20, 33] and checking if
it can be recovered by inserting in the MC the (indepen-
dent) parameterization ∆αIIhad(t) of Ref. [28] by means of
our algorithm. For this exercise, we used the generator
BabaYaga in its most complete setup.

In Fig. 3, ∆αextr
had is the result extracted with our al-

gorithm: the figure shows that the method is capable
of recovering the underlying function ∆αhad(t) inserted
into the “data”. As the difference between ∆αIhad and
∆αextr

had is hardly visible on an absolute scale, in Fig. 3
all the functions have been divided by ∆αIIhad to display
better the comparison between ∆αIhad and ∆αextr

had .
In order to assess the achievable accuracy on ∆αhad(t)

with the proposed method, we remark that the LO con-
tribution to the cross section is quadratic in α(t), thus
we have

1

2

δσ

σ
' δα

α
' δ∆αhad, (9)

which relates the absolute error on ∆αhad with the rel-
ative error on the Bhabha cross section. From the the-
oretical point of view, the present accuracy of the MC
predictions [32] is at the level of about 0.5h, which im-
plies that the precision that our method can, at best,
set on ∆αhad(t) is δ∆αhad(t) ' 2 · 10−4. Any further
improvement requires the inclusion of the NNLO QED
corrections into the MC codes, which is at present not
available (although not out of reach) [32].

From the experimental point of view, a measurement
of aHLO

µ from space-like data competitive with the current
time-like evaluations would require an O(1%) accuracy.
Statistical considerations show that a 3% fractional ac-
curacy on the aHLO

µ integral can be obtained by sampling
the integrand in ∼ 10 points around the x peak with a
fractional accuracy of 10%. Given the value of O(10−3)
for ∆αhad at x=xpeak, this implies that the cross section
must be known with relative accuracy of ∼ 2×10−4. Such
a statistical accuracy, although challenging, can be ob-
tained at flavor factories, as shown in Fig. 2 (right): with
an integrated luminosity of O(1), O(10), O(100) fb−1 at√
s = 1, 3 and 10 GeV, respectively, the angular region

of interest can be covered with a 0.01% statistical ac-
curacy per degree, which must be matched by a similar
systematic error.

A fraction of the latter comes from the knowledge of
the machine luminosity, which is normalized by calculat-
ing a theoretical cross section in principle not depending
on ∆αhad. We devise two possible options for the nor-
malization process:

1. using the e+e−→ γγ process, which has no depen-
dence on ∆αhad, at least up to NNLO order;

2. using the Bhabha process at t∼ 10−3 GeV2, where
the dependence on ∆αhad is of O(10−5) and can be
safely neglected.

Both processes have advantages and disadvantages; a
dedicated study of the optimal choice will be considered
in a future detailed study.

4 Conclusions

We discussed a novel approach to determine the lead-
ing hadronic correction to the muon g-2 by measuring
the running of α(t) in the space-like region from Bhabha
scattering data. Although challenging, we argue that
this alternative determination may become feasible with
a dedicated experimental and theoretical effort using
data collected at present flavor factories and possibly
also at a future high-energy e+e− collider. The proposed
determination can become competitive with the accu-
racy of the present results obtained with the standard
dispersive approach via time-like data.
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Fig. 3. The extracted function ∆αextr
had (t) compared to the function ∆αIhad(t) used in the pseudo-data (see text).

The functions ∆αIIhad(t)±δ(t) are shown to display the range spanned by the MC samples. All functions have been
divided by ∆αIIhad(t). The tiny difference between ∆αIhad and ∆αextr

had is due to the binning discretization.
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