Post-BEPCII in China HIEPA

Jianbei Liu
University of Science and Technology of China

10th International Workshop on e^+e^- collisions from φ to ψ September 27, 2015 Hefei, China

Beijing Electron Positron Collider

BEPCII

- A major upgrade to BEPC
 - double-ring, large crossing-angle, super-conducting RF ...
 - luminosity increase ~ two orders of magnitude

The BESIII Detector

• A high-performance detector operating in the τ -c energy regime

Drift chamber (MDC) Small cell, 43 layer Gas He/ $C_3H_8 = 40/60$ σ_{xy} =130 μ m, dE/dx~6% σ_p /p = 0.5% @ 1 GeV

Time-of-flight (TOF) Plastic scintillator $\sigma_{\rm T}$ (barrel): 90 ps $\sigma_{\rm T}$ (endcap): 110 ps

ECAL calorimeter CsI(TI): L=28 cm $(15X_0)$ Energy range: 0.02-2GeV $\sigma_{\rm F}/\sqrt{\rm E} = 2.5\%$ @ 1GeV $\sigma_{1} = 0.5 - 0.7 \text{ cm}/\sqrt{E}$

RO channels: 10⁴ Event rate: 4 kHz Data size: 50 MB/s **Grid computing**

CPU: 3200 core

1T super-

magnet

Storage: 2.2 pB

Selected Achievements from BEPC(II)/BES(II)(III)

τ mass measurement

R value measurement

Near threshold pp enhancement

Zc(3900)

Post-BEPC2

- BEPC made China's mark in high energy physics in the world. BEPCII, as a successor, went on to establish China's lead in τ -c physics.
 - The two projects have been a big success together, with many world-class achievements made.
- Shall we continue with such a success after BEPCII?
 - YES !

High Intensity Electron Positron Accelerator

- HIEPA: a post-BEPCII HEP project being envisaged in China.
 - To be an ultimate τ-c machine, and moreover, a multifunctional and multidisciplinary complex, well beyond BEPCII.

- $E_{cm} = 2-7 \text{ GeV}, L=(0.5-1)\times 10^{35} \text{ cm}^{-2}\text{s}^{-1} @4 \text{ GeV}$
- ~650m double-ring, single beam polarized
- Synchrotron radiation
- Potential for FEL

HIEPA Parameters

	HIEPA技术指标				
束流 优化 能 量	2 GeV				
对撞质心能量	2-7GeV可调,优化4GeV				
束流流 强	2A				
对撞亮度	$> 0.5 \times 10^{35}/(cm^2 \cdot s)$				
束流发射度	0.1nm·rad				
光源亮度	10 ¹⁷ ~10 ²¹ Ph./(s mm ² mrad ² 0.1%BW)				
辐射类型	弯 铁辐射、插入元件辐射				
寿命	Top-up				
轨道周长	648 m				
高频频率	500 MHz				
谐波数	1080				
聚焦结构类型	7BA,组合型				
周期数	24				
直线节长度	5m×12, 9m×10, 81m×2(其中一个为对撞区)				

A super τ-charm factory!

Critical Aspects in HIEPA R&D

- Physics design studies of very-high-luminosity circular e⁺e⁻ accelerators
- Injection technology
- Super-conducting magnets and RF cavities
- Beam polarization technology
- Insertion devices
- Vacuum technology
- High-resolution beam monitoring
- •

Physics in the τ-c Energy Region

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ leptons

- XYZ particles
- Physics with D mesons
- $f_D and f_{Ds}$
- D⁰-D⁰ mixing
- Charm baryons

R scan

- Precision $\Delta\alpha_{QED}$, a_{μ} , charm quark mass extraction.
- Hadron form factor(nucleon, Λ , π).

Highlights in HIEPA Physics Program

- Search for new forms of hadrons and studies of their properties.
- Measurements and studies of the nucleon/hadron electromagnetic form factors (NEFFs) and QCD study in nonperturbative region.
- Search for new physics beyond the SM

•

Physics Potential of HIEPA

Zc(3900) significance

10 years @BELLE ~ 1 month @BESIII ~ < 1 day @HIEPA

Zs?@HIEPA

$\tau \rightarrow \mu \gamma$

G_{FM} **Measurements**

Babar(~5 years): 469 fb⁻¹, 10-24%

BESIII(~4 months): 0.4 fb⁻¹, 10%

Nsig	$\delta R_{EM}/R_{EM}$	δσ/σ	L(pb ⁻¹)	comment
3881	9.5%	1.6%	16.630	BESIII expected
389898	0.96%	0.16%	1670.69	HIEPA (~1 week)

UL (STCF 1-2 years @ HIEPA) ≤ UL (12-15 years @ super-B)

Detector Requirements for HIEPA

Overall requirements

- Efficient and fast triggering
- Efficient and precise reconstruction of exclusive final states
- High rate capability and radiation tolerance, particularly in endcaps

Vertexing (or inner tracking)

 Vertexing not very critical for HIEPA, more to combine with a central tracker for tracking (inner tracking)

Central tracking

 large acceptance, low mass, high efficiency (down to p<~0.1 GeV) and high resolution (p <~ 1GeV)

PID

 $-\pi/K$ separation up to 2GeV, compact and low mass

e/γ measurement

Good energy and position resolution in 0.02-2 GeV

μ detection

- Low momentum threshold (p<~0.4GeV)
- high μ efficiency and π suppression power

Conceptual Detector Layout

PXD

- Material budget ~0.15%X₀ / layer
- $\sigma_{xv}=50 \mu m$

MDC

- $\sigma_{xy}=130 \mu m$
- $\sigma_p/p = 0.5\%$ at 1 GeV
- dE/dx<7%

PID

• π/K (and K/p) 3-4 σ separation up to 2GeV/c

EMC

Energy range: 0.02-2GeV

At 1 GeV σ_{E} (%)

Barrel(Cs(I): 2

Endcap (Cs): 4

MUD

• μ/π suppression power >10

Inner & Outer Trackers

- Dominant factor in tracking: multiple scattering, so driving force in design of tracking system: low mass.
- Special design is required for inner tracking to cope with the very high level of radiation close to IP. So an inner-outer separate design is optimal.
- Detector technology options
 - Inner tracker
 - Low mass silicon detectors: DEPFET, MAPS
 - MPGD: cylindrical GEM/MicroMegas
 - Outer tracker: a low mass drift chamber

Inner Tracker Technologies

DEPFET

Two layers of PXD: 1.8 cm and 2.2 cm in radius, consisting of 8 and 12 modules for innermost layer and the second, respectively.

Number of pixels per module 250 x 1536

Pixel size (r-phi, z)

50μm x (60-75) μm

Frame time Material budget per layer 20 µs 0.15% X₀

Resolution (r-phi, z)

<10µm, < 20µm

Occupancy at 1.8 cm radius 0.2 hits um-2s-1

Radiation environment ~1 Mrad/year **DEPFET Technology**

Completed Detyctor Completed Detyctor

Pixel readout would be required for the innermost layers at HIEPA

MAPS

Detector	Radius (cm)	Hit Resolution R/φ - Z (μm - μm)	Radiation length
SSD	22	30 / 860	1.5 %X ₀
IST	14	170 / 1800	1.32 %X ₀
PIXEL	8	12 / 12	~0.37 %X ₀
	2.6	12 / 12	~0.37 %X ₀

MAPS technology

- SSD: single-layer double-side strips
- IST: one layer of strips
- PIXEL
 - MAPS technique: sensor and signal processing integrated → low material, low power consumption
 - Integration time: 200µs
 - pixel pitch: 20 um *20um
 - 2cm*20cm ladder, 10 ladder in total
 - double layers

A prototype pixel ladder

Cylindrical MicroMegas

- 221 mm radius
- PCB thickness 100 µm
- Drift thickness 250 µm
- Drift Field 2.4kV on 3 mm gap

- "Z" Barrel 768 "Z" strips
- 225 mm radius, 0.529 mm pitch
- PCB thickness 200 um
- Drift thickness 250 µm
- Drift Field 2.4kV on 3 mm gap

Outer Tracker: A Drift Chamber

- Rin = 15 cm
- Rout = 85 cm
- L = 2.4 m
- B = 1 T
- He/C₂H₆ (60/40)
- Cell size =1.0cm(inner),1.6cm(outer)
- Sense wire: 20 um W
- Field wire: 110 um Al
- # of layers = 44
- Layer configuration: 8A-6U-6V-6A-6U-6V-6A
- Carbon fiber for both inner and outer walls
- Expected spatial resolution: <130 μm
- Expected dE/dx resolution: <7%

Combination of inner and outer trackers

MDC + Belle-II PXD

Detector	radius (cm)	material (%X ₀)	resolution (μm)
MDC Outer 9-48	23.5-82	0.0045 /layer	130
MDC Inner 1-8	15-22	0.0051 /layer	130
PXD 3 rd layer	10	0.15	50
PXD 2 layers	3/6	0.15 /layer	50
Beam pipe	2	0.15	-

PID Detector

- π/K separation up to 2GeV.
 - Very tough for TOF. Cherenkov technology is favorable
 - Low p region covered by trackers through dE/dx
- Compact and low mass (<0.5X₀)
- Detector types
 - Threshold Cherenkov detectors
 - Imaging Cherenkov detectors
 - RICH (large momentum range)
 - DIRC (rather large volume for readout)
 - TOP (very compact, also very "delicate")

$$\cos \theta_{\rm c} = \frac{1}{\beta n}$$

Baseline PID Design

- RICH: 0.8<p<2GeV
- Detector layout similar to ALICE HMPID.
- Readout similar to
 PHENIX HBD (GEM+CsI)
 Radiator: liquid C₆F₁₄,
 n~ 1.3
- Immune to B field.
 Same detector structure in barrel and endcaps.

Geant4 Simulation

EMC

- Main performance requirements
 - Good energy resolution
 - Good spatial and angular resolution
 - Fast response
 - Good radiation tolerance
- Technology option
 - Crystal + SiPM

Candidate Crystals

Crystal	CsI(TI)	CsI	BSO	PbWO₄	LYSO(Ce)
Density (g/cm³)	4.51	4.51	6.8	8.3	7.40
Melting Point (°C)	621	621	1030	1123	2050
Radiation Length (cm)	1.86	1.86	1.15	0.89	1.14
Molière Radius (cm)	3.57	3.57	2.2	2.0	2.07
Interaction Len. (cm)	39.3	39.3	23.1	20.7	20.9
Hygroscopicity	Slight	Slight	No	No	No
Peak Luminescence (nm)	550	310	480	425/420	420
Decay Time b (ns)	1220	30 6	100 26,2.4	30 10	40
Light Yield b,c (%)	165	3.6 1.1	3.4 0.5/0.25	0.30 0.077	85
LY in 100 ns	13	4.6	2.9	0.37 (2-3x t)	78
Ly in 30 ns	4	3.3	1.5	0.26 (2-3׆)	45
d(LY)/dT b (%/ °C)	0.4	-1.4	-2.0	-2.5	-0.2
Radiation hardness (rad)	10 ³	10 ⁴⁻⁵	106-7	106-7	108
Dose rate dependent	no	no	yes	yes	
Experiment	CLEO,BABAR, Belle, BES III	KTeV,E787 Belle2 1 st SuperB 2 nd	Belle2 3rd	CMS, ALICE PANDA Belle2 2nd	SuperB 1st (Hybrid)

SiPM Technology

- SiPM: a novel and rapidly-developing photosensor technology
 - High gain, low equivalent noise, B-field resistant, good time resolution
- Active R&D at USTC

Energy Resolution

A few % resolution achieved at ~1 MeV, σ_E/E ~ 1.26/sqrt(N_{pe}), still room for improvement

BGO + SiPM: 13%*2.354 = 31%

CsI(TI)+SiPM: 6%*2.354= 14%

LYSO+SiPM: 5%*2.354= 12%

LSO/LYSO + PMT: 11-21%

LSO/LYSO + APD: 26-43%

at 1GeV

Muon Detector

- Idea to lower muon detection threshold: measuring time of flight at entrance to iron yoke, a timing muon detector.
- Can be realized with MRPC technology.

MTD at STAR

Long-Strip MRPC Module

- Active area: 87 x 52 cm²
- Read out strip: 87 cm x 3.8 cm
- Gas gaps: 0.25 mm x 5

Performance:

- Efficiency: > 98%
- Time resolution: < 80 ps
- Spatial resolution: 0.6 cm

μ/π separation power

- 11 layers RPC (3 MRPC)
- Operation mode
 - barrel: stream
 - endcaps: avalanche

- Below 400MeV, μ and π can be well separated
- Below 300MeV, μ can't reach iron yoke

Summary

- BEPC(II)/BES(II)(III) has made important achievements in particle physics with world impact, establishing China's strong leading position in τ -c physics in the world.
- Still very rich and yet unexplored physics in τ -c regime with lots of pressing fundamental questions to be addressed.
- HIEPA is a good candidate HEP project in China to continue with the success of BEPC(II) to fully explore the physics in τ -c regime.