Measurement of the timelike neutron and proton form factors at VEPP-2000

Aleksandr Korol BINP, Novosibirsk

23.09.2015

VEPP-2000 complex

Center-of-mass energy (E) Beam energy spread Luminosity (L) 0.3-2.0 GeV 0.6 МэВ (at E=1.8 GeV) 0.7·10³¹ cm⁻² sec⁻¹ (at E=1.8 ГэВ)

Data 2010-2012

Experiment (1.05 – 2.0 GeV)	Integrated luminosity	√s > 1.88 GeV
02.2010 - 06.2010	5 pb ⁻¹	71 nb ⁻¹
12.2010 - 06.2011	25 pb ⁻¹	3.8 pb ⁻¹
01.2012 - 04.2012	17 pb ⁻¹	4.9 pb ⁻¹
Total	47pb ⁻¹	8.8 pb ⁻¹

$e^+e^- \rightarrow$ nucleon anti-nucleon

Total cross section: $\sigma(s) = \frac{4 \pi \alpha^2 \beta C}{3 s} (|G_M(s)|^2 + \frac{2M_N^2}{s} |G_E(s)|^2)$ where C is the Coulomb factor $C \approx \frac{\pi \alpha}{\beta} / (1 - e^{-\frac{\pi \alpha}{\beta}})$ for proton $C = 1^{\beta}$ for neutron

 G_{E} and G_{M} are the electric and magnetic form factors. Differential cross section:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta C}{4s} (|G_M(s)|^2 (1 + \cos^2 \theta) + \frac{4M_N^2}{s} |G_E(s)|^2 \sin^2 \theta)$$

Angular distributions is used to extract $|G_{e'}G_{M}|$

"Effective form factor":

$$F(s) = \frac{|G_M(s)|^2 + \frac{2M_N^2}{s}|G_E(s)|^2}{1 + \frac{2M_N^2}{s}}$$

PhiPsi2015

CMD-3

- 1 vacuum chamber
- 2 drift chamber
- 3 electromagnetic calorimeter, BGO
- 4 Z chamber
- 5 CMD SC solenoid
- 6 electromagnetic calorimeter, LXe
- 7 electromagnetic calorimeter, CsI
- 8 yoke
- 9 VEPP-2000 solenoid

$e^+e^- \rightarrow p\overline{p}$ events

- E_{beam}= 945 MeV
- \overline{p} stops and annihilates in the beam pipe
- produces secondary particles

- E_{beam}= 970 MeV
- p is absorbed in the Z-chamber
- \overline{p} annihilates
- some secondary particles came back

pp: Signal selection

E_{beam} ≤ 950 MeV:

- 4 or more tracks common vertex found in the beam pipe material;
- no tracks with energy deposition in calorimeter higher than 400 MeV.

E_{beam} > 950 MeV:

- two opposite-charge collinear central tracks in DC;
- $|p1 p2|/(p1 + p2) < 0.15 (< 0.2 \text{ for } E_{beam} < 955 \text{ MeV});$
- total energy deposition in the calorimeter >200 MeV.

pp: CMD-3 Results

arXiv:1507.08013

Cross section

systematic uncertainty $\sim 6\%$

Fit

$$|G_{E}/G_{M}| = 1.49 \pm 0.23 \pm 0.3$$

SND

NIM A449 (2000) 125-139

- 1 **beam pipe**
- 2 tracking system,
- 3 aerogel cherenkov

counter

- 4 NaI(Tl) crystals
- 5 phototriodes
- 6 iron muon absorber
- 7–9 muon detector
- **10** focusing solenoids

$e^+e^- \rightarrow p\overline{p}$ events

960 MeV

E_{beam} < 960 MeV:

- exactly 3 tracks with a common vertex located in the beam pipe material;
- no other tracks (proton is not registered).

E_{beam} ≥ 960 MeV:

- two collinear central tracks in DC with large dE/dx;
- total energy deposition in the calorimeter > 650 MeV;
- one of tracks is not associated with calorimeter cluster.

pp: SND Results

Preliminary!

Cross section

systematic uncertainty ~ 7%

Fit:
$$|G_{E}/G_{M}| = 1.64 \pm 0.26$$

$e^+e^- \rightarrow nn events$

- no signal from neutron
- "star" from anti-neutron

nn: Signal events selection and background substraction

Selection:

- Muon system veto;
- At least 2 clusters in EMC

- 950MeV<E_{emc}<1500MeV
- P_{emc}>0.5·E_{beam}
- $25 < \theta_{PEMC} < 155$
- no e+e-, yy events

Cosmic background substracted using

•
$$N_i = x \cdot T_i + \sigma_{vis} (E_{beam}) \cdot L$$

Other processes controlled with

•
$$\sigma_{nn} = 0$$

nn: Cross section

Cross section systematic uncertainty ~ 17%

Discussion on proton results

- The cross section is constant, through it is natural to expect its decrease as $\beta = (1-4m_p^2/s)^{1/2}$ when approaching the threshold.
- Both SND and CMD-3 results confirm the BABAR result, that $|G_E/G_M|$ near threshold strongly differs from unity. This was somewhat unexpected, because $G_E = G_M$ at threshold

Nucleon form factors

- The e⁺e⁻⁻ \rightarrow nn cross section is constant and coincides within the errors with that for proton anti-proton (asymptotics pQCD $\sigma_p/\sigma_n = 4$).
- $\sigma_p = \sigma_n \Rightarrow$ either isoscalar or isovector amplitude dominates in $e^+e^- \rightarrow n\overline{n}$
- I. Subthreshold resonance
- II. Final state interaction

V. F.Dmitriev, A.I.Milstein, S.G.Salnikov Phys.Atom.Nucl. 77 (2014) 1173: Paris N anti-N optical potential: $I=0 - attraction, I=1 - repulsion \Rightarrow$ the isoscalar form factor dominates.

Relation with $e^+e^- \rightarrow 6\pi$

A.E. Obrazovsky, S.I. Serednyakov JETP Lett. 99 (2014) 363

In the total $e^+e^- \rightarrow hadrons$ cross section, the appearance of the $e^+e^{--} \rightarrow nn$ processes is fully compensated by the dip in the cross section for the isovector processes $e^+e^- \rightarrow 3(\pi^+\pi^-)+2(\pi^+\pi^-\pi^0)$.

In other cross sections near nn threshold, any features, comparable in magnitude with that for $e^+e^- \rightarrow 6\pi$, are not observed.

Plans

- VEPP-2000: upgrade to increase a luminosity by the order of magnitude;
- Use of the laser Compton backscattering method for beam energy measurement;
- SND: the time measurement in the calorimeter electronics, will allow to separate n signal from the cosmic background;
- CMD-3: using the new TOF system for the nn events selection;

Conclusion

- Cross section of the $e^+e^- \rightarrow pp$ process and the timelike form factor of the proton are measured;
- Cross section of the e⁺e⁻ → nn process and the timelike form factor of the neutron are measured;
- Results for both the neutron and the proton form factor near the pair birth threshold raise some interpretation questions;