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Purpose:

To present an analysis of the η (and η’)
transition form factor in the space and time-like regions at 
low and intermediate energies in a model-independent way 
through the use of rational approximants

Motivations:
●

●

To extract the slope and curvature parameters of the 
TFFs as well as their values at zero and infinity from 
experimental data

To discuss the impact of these results on the
mixing parameters of the η and η’ system and 
on the determination of the VPγ couplings



Outline:

In collab. with P. Masjuan and P. Sánchez-Puertas (Mainz)
Phys. Rev. D89 (2014) 3, 034014 (arXiv:1307.2061 [hep-ph])
Eur. Phys. J. C75 (2015) 9, 414 (arXiv:1504.07742 [hep-ph])

● Pseudoscalar transition form factors

●

● Impact on η-η’ mixing parameters 
Results 

● Determination of the VPγ couplings

● Padé approximants
● Application to η and η’ TFFs

● Conclusions
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B. Aubert et al. (BABAR Collaboration), PRD 80 (2009) 052002

π0 TFF

S. Uehara et al. (BELLE Collaboration), PRD 86 (2012) 092007

●Pseudoscalar transition form factors



@ low-momentum transfer:
slope

curvature

or
axial anomaly
(not for η and η’) exp. decay width

@ large-momentum transfer:

F (Q2) =

Z
TH(x,Q2)�P (x, µF )dx

convolution of perturbative and 
non-perturbative regimes

TH(�⇤� ! qq̄) �P (qq̄ ! P )

@ lowest order in pQCD

● Pseudoscalar transition form factors

@ low-momentum transfer:
slope (related to charge radius)

curvature

or
axial anomaly
(not for η and η’) exp. decay width

@ large-momentum transfer:

F (Q2) =

Z
TH(x,Q2)�P (x, µF )dx

convolution of perturbative and 
non-perturbative regimes
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●Pseudoscalar transition form factors



Q2F⌘(0)�⇤�(Q
2, 0) = a0Q

2 + a1Q
4 + a2Q

6 + . . .

PN
M (Q2) =

TN (Q2)

RM (Q2)
= a0Q

2 + a1Q
4 + a2 +Q6 + · · ·+O((Q2)N+M+1)

simple, systematic and model-independent
parametrization of experimental data in the 
whole energy range (better convergence)

Fitting method: use of different sequences of PAs

● How many sequences?
depends on the analytic structure of the exact function

● How many elements per sequence?
limited by exp. data points and statistical errors

●Padé approximants



How to ascribe a systematic error to the results?

test the method with a model try different models

P. Masjuan, PRD 86 (2012) 094021

slope
curvature 21% of sys. error

5.6% of sys. error

● Log model:

● Regge model:

slope
curvature 9.4% of sys. error

2.9% of sys. error

P. Masjuan, S. Peris and J.J. Sanz-Cillero, PRD 78 (2008) 074028● Padé Approximants
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To use the P[N,1](Q2) and P[N,N](Q2) sequences of PAs 

single resonance dominance

asymptotic behaviour

η TFF η’ TFF

● Application to η and η’ TFFs



Slope: η TFF η’ TFF

Curvature:

● Application to η and η’ TFFs
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Curvature:

● Application to η and η’ TFFs



●Results
Slope and curvature:

Comparison with other results:

ChPT: bη=0.51, bη’=1.47

VMD: bη=0.53, bη’=1.33

cQL: bη=0.51, bη’=1.30

BL: bη=0.36, bη’=2.11

CELLO: bη=0.428(89), bη’=1.46(23)

CLEO: bη=0.501(38), bη’=1.24(8)

Lepton-G: bη=0.57(12), bη’=1.6(4)

MAMI: bη=0.58(11), WASA: bη=0.68(26)

NA60: bη=0.585(51)

Disp: bη=0.61(+0.07)(-0.03), bη’=1.45(+0.17)(-0.12) η,η’→γ*γ



● Further applications of this method

Analysis of time-like processes (η,η’→l+l-γ) 9
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FIG. 7: Results of this work (solid squares) for the η TFF, |Fη(mll)|
2, compared to other recent measurements and theoretical

predictions: former data of the A2 Collaboration [6] (open circles in (a)) and the NA60 in peripheral In–In data [7] (open
squares in (b)), calculations of Refs. [24] (dash-dotted line in (a)), Refs. [27] (dashed line with an error band in (a)), and
Ref. [31] (dotted line with an error band in (b)). The solid line is the fit from Fig. 6(b) rescaled so that p0 = 1.

is

Λ−2 = (1.95± 0.15stat ± 0.10syst) GeV−2, (3)

which is in very good agreement within the errors with all
recent results reported in Refs. [6–8]. As seen in Fig. 7,
the |Fη(mll)|2 results of this work are in similar good
agreement within the error bars with the data points from
Refs. [6, 7].
The uncertainty reached for the Λ−2 value in the

present work is smaller than those of all previous mea-
surements based on the η → e+e−γ decay, is of a simi-
lar magnitude as the NA60 value from peripheral In–In
data [7], and still yields to the latest, preliminary result
of the NA60 from p–A collisions [8].
In Fig. 7, the results of this work for |Fη(mll)|2 are also

compared to three different theoretical predictions. Since
all models assume that |Fη(mll = 0)|2 = 1, for a better
comparison, the fit to the data points from Fig. 6(b) is
rescaled by setting its normalization parameter to p0 = 1
and leaving its second parameter p1, reflecting the slope
parameter Λ−2, unchanged. The calculation by Ter-
schlüsen and Leupold (TL) combines the vector-meson
Lagrangian proposed in Ref. [22] and recently extended
in Ref. [23], with the Wess-Zumino-Witten contact inter-
action [24] (see also Ref. [25] for the corresponding case
of the π0 TFF). Their calculation agrees very well with
the standard VMD form factor. As seen, the TL cal-
culation (shown in Fig. 7(a) by a dash-dotted line) goes
slightly lower than the pole-approximation (Eq. (2)) fit
to the present data, whereas it fully describes the data
points within the error bars.

The second calculation is based on a model-
independent method using Padé approximants that was
developed for the π0 TFF in Ref. [26]. Using space-
like data (CELLO [28], CLEO [29], BABAR [30]), this
method provides a parametrization that is also suited
to describe data in the range mll = (0.−

√
0.4) GeV/c2,

and thus provides a model-independent prediction for the
timelike TFF [27]. Over the full mll range, this calcula-
tion (shown in Fig. 7(a) by a dashed line with an error
band) practically overlaps with the pole-approximation
fit to the present data points.
In another recent calculation [31] by the Jülich group,

the connection between the radiative decay η → π+π−γ
and the isovector contributions of the η → γγ∗ TFF is
exploited in a model-independent way, using dispersion
theory (DT). This calculation (shown in Fig. 7(b) by a
dotted line with an error band) goes slightly above the
fit to the present data.

V. SUMMARY AND CONCLUSIONS

A new determination of the electromagnetic transi-
tion form factor from the η → e+e−γ Dalitz decay
was presented in this paper. The statistical accuracy
achieved in this work surpasses all previous measure-
ments of η → e+e−γ and matches the NA60 result based
on η → µ+µ−γ decays from peripheral In-In collisions.
Compared to the former determination of the η TFF by
the A2 Collaboration, an increase by more than one or-
der of magnitude in statistic has been achieved. This was
accomplished by an analysis of three times more data

M. Unverzagt et al. (A2 Coll. @MAMI), PRC 89 (2014) 044608

Our prediction is behind 
the experimental fit!

The Transition Form Factor
Results for the ⌘ & ⌘0 TFF with Space-like data

Update with MAMI Time-like data (PRELIMINARY)
Applications

• Our method may be extended to low q

2 time-like data.
• Alternatively, we can use the data from MAMI in our fitting procedure.
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Analysis of π0, η and η’ contributions to HLbL of (g-2)μ

η→e+e-γ



Application to η TFF including time-like data●
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3.2 Results

After defining the set of data we will use, we report on our
results. We start fitting with a PL

1 (Q2) sequence. We reach
L = 7 and we show it in Fig. 1 as a green-dashed line. The
smaller plot in Fig. 1 is a zoom into the time-like region. The
obtained LEPs are collected in Table 2 and shown in Fig. 2
together with our previous results (empty orange) when only
space-like data were included in our fits [4]. The stability
observed for the LEPs with the PL

1 (Q2) sequence is remark-
able, and the impact of the inclusion of time-like data is clear
since not only allows us to reach higher precision on each PA
but also to enlarge our PA sequence by 2 elements. The sta-
bility of the result is also clearer and reached earlier, reduces
our systematic error, and shows the ability of our method to
extract, for the first time, the LEPs from a combined fit to all
the available data. The coefficients of the best fitted PL

1 (Q2)

can be found in Appendix A.

Fig. 1 η-TFF best fits. Green-dashed line shows our best PL
1 (Q2) fit

and black line our best PN
N (Q2) fit. Experimental data points in the

space-like region are from CELLO (red circles) [9], CLEO (purple tri-
angles) [10], and BABAR (orange squares) [37] Collaborations. Exper-
imental data points in the time-like region are from NA60 (blue stars)
[11], A2 2011 (dark-green squares) [12], and A2 2013 (empty-green
circles) [14]. The inner plot shows a zoom into the time-like region

Table 2 Low-energy parameters for the η TFF obtained from the PA
fits to experimental data

η TFF

N bη cη dη χ2/dof

PN
1 (Q2) 7 0.575 (16) 0.338 (22) 0.198 (21) 0.6

PN
N (Q2) 2 0.576 (15) 0.340 (20) 0.201 (19) 0.6

Final 0.576 (11) 0.339 (15) 0.200 (14)

The first column indicates the type of sequence used for the fit and N
is its highest order. The last row shows the weighted average result for
each LEP. We also present the quality of the fits in terms of χ2/DOF
(degrees of freedom). Errors are only statistical and symmetrical

To reproduce the asymptotic behavior of the TFF, we have
also considered the PN

N (Q2) sequence (second row in Table
2). The results obtained are in very nice agreement with our
previous determinations. The best fit is shown as black-solid
line in Fig. 1. We reach N = 2. Since these approximants
contain the correct high-energy behavior built-in, they can be
extrapolated up to infinity (black-dashed line in Fig. 1) and
then predict the leading 1/Q2 coefficient:

lim
Q2→∞

Q2Fηγ ∗γ (Q2) = 0.177+0.020
−0.009 GeV . (4)

This prediction, although larger than in our previous
work [4], still cannot be satisfactorily compared with the
BABAR time-like measurement at q2 = 112 GeV2,
Fηγ ∗γ (112 GeV2) = 0.229(30)(8) GeV [35]. The impact
of such a discrepancy on η–η′ mixing is discussed in the next
section.

Our combined weighted average results from Table 2, tak-
ing into account both types of PA sequences, give

⎧
⎪⎨

⎪⎩

bη = 0.576(11)stat(4)sys

cη = 0.339(15)stat(5)sys

dη = 0.200(14)stat(18)sys

(5)

where the second error is systematic (around 0.7, 1.5, and
9 % for bP , cP , and dP , respectively, from Table 1).

Equation (5) can be compared with bη = 0.60(6)stat(3)sys,
cη = 0.37(10)stat(7)sys using space-like data exclusively [4].
As expected, not only statistical results have been improved
but also systematics, both by an order of magnitude, yielding
the most precise slope determination ever.

Our slope is compared with experimental determinations
from [8–14] together with theoretical extraction from [1–7]
in Fig. 3.

One should notice that all the previous collaborations used
a VMD model fit to extract the slope. In order to be consis-
tent when comparing with our results, a systematic error of
about 40 % should be added to the experimental determina-
tions based on space-like data [4,30], and a systematic error
of about 5 % should be added to the experimental determi-
nations based on time-like data (see Appendix B for further
details).

When comparing different theoretical extractions of the
slope of the η TFF with our result in Fig. 3, we find a pretty
good agreement with the exception of the results in Ref. [3]
that reported bη = 0.546(9) and bη = 0.521(2) using res-
onance chiral theory with one- or two-octet ansätze. The
disagreement is between 2 and 5 standard deviations. Ref-
erence [3] uses resonance chiral theory, which is based on
large-Nc arguments, to extract LEPs. Going from large-Nc
to Nc = 3 imposes a systematic error [33,44–46]. Since
Ref. [3] considered two approximations for fitting the η TFF

123
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Fig. 2 Slope (top-left panel), curvature (top-right panel), and third
derivative (bottom panel) predictions for the η TFF using the PL

1 (Q2)
up to L = 7 (blue points). Previous results considering only space-like

data from Ref. [4] are also shown (empty-orange squares) as a way to
stress the role of the time-like data in our fits. Only statistical errors are
shown

Fig. 3 Slope determinations for η TFF from different theoretical (red
circles) and experimental (blue squares) references discussed in the
text. Inner error is the statistical one and larger error is the combination
of statistical and systematic errors

(with one and two octets), one could consider the difference
between them as a way to estimate such an error [4,40,47].
In such a way, the η TFF slope would read bη = 0.53(1), at
2.5 standard deviation from our result.

Eventually, we want to comment on the effective single-
pole mass determination "P from Eq. (3). Using bP =
m2

P/"
2
P and the values in Eq. (5), we obtain "η = 0.722(7)

GeV or "−2
η = 1.919(39) GeV−2.

The fits shown in Fig. 1 use the experimental value
of the two-photon decay width as an experimental datum
to be fitted. Such a fit could be repeated without includ-

ing that decay. In such a way, we reach again a P7
1 (Q

2)

and a P2
2 (Q

2) as our best PA with the advantage now
that the value Fηγ γ (0) is a prediction of our fits. We
find Fηγ γ (0)|fit = 0.250 (38) GeV−1 for the P7

1 (Q
2) and

Fηγ γ (0)|fit = 0.248 (28) GeV−1 for the P2
2 (Q

2), which
translates into $ηγγ |fit = 0.4 (13) keV and $ηγγ |fit =
0.42 (10) keV, respectively. Comparing with the experimen-
tal value $ηγγ |exp = 0.516 (18) keV such predictions are at
0.66 and 0.94 standard deviation each.

3.3 The impact of η → γ γ measurements

Our results in Eq. (5) are, by far, the most precise to date.
Particularly, we believe that the precision achieved for bη

will be hard to improve even if new data becomes available.
Nevertheless, the values obtained mildly depend on $ηγγ .
For instance, if we would have used the value measured
through the Primakoff mechanism omitted in the PDG aver-
age [42] (i.e., $Primakoff

ηγ γ = 0.476(62) keV [48]), we would
find bη = 0.570(13) for the SL+TL extraction with a 20 %
larger error, still in nice agreement with our aforementioned
results. Notice that this result is pretty similar to the one
obtained by our fits when the decay into two photons is not
used in the data set. This fact does not lead to a puzzle, every-
thing seems to agree within uncertainties, but it may suggest
to look again for a Primakoff measurement.

123
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(with one and two octets), one could consider the difference
between them as a way to estimate such an error [4,40,47].
In such a way, the η TFF slope would read bη = 0.53(1), at
2.5 standard deviation from our result.

Eventually, we want to comment on the effective single-
pole mass determination "P from Eq. (3). Using bP =
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P and the values in Eq. (5), we obtain "η = 0.722(7)

GeV or "−2
η = 1.919(39) GeV−2.

The fits shown in Fig. 1 use the experimental value
of the two-photon decay width as an experimental datum
to be fitted. Such a fit could be repeated without includ-

ing that decay. In such a way, we reach again a P7
1 (Q

2)

and a P2
2 (Q

2) as our best PA with the advantage now
that the value Fηγ γ (0) is a prediction of our fits. We
find Fηγ γ (0)|fit = 0.250 (38) GeV−1 for the P7

1 (Q
2) and

Fηγ γ (0)|fit = 0.248 (28) GeV−1 for the P2
2 (Q

2), which
translates into $ηγγ |fit = 0.4 (13) keV and $ηγγ |fit =
0.42 (10) keV, respectively. Comparing with the experimen-
tal value $ηγγ |exp = 0.516 (18) keV such predictions are at
0.66 and 0.94 standard deviation each.

3.3 The impact of η → γ γ measurements

Our results in Eq. (5) are, by far, the most precise to date.
Particularly, we believe that the precision achieved for bη

will be hard to improve even if new data becomes available.
Nevertheless, the values obtained mildly depend on $ηγγ .
For instance, if we would have used the value measured
through the Primakoff mechanism omitted in the PDG aver-
age [42] (i.e., $Primakoff

ηγ γ = 0.476(62) keV [48]), we would
find bη = 0.570(13) for the SL+TL extraction with a 20 %
larger error, still in nice agreement with our aforementioned
results. Notice that this result is pretty similar to the one
obtained by our fits when the decay into two photons is not
used in the data set. This fact does not lead to a puzzle, every-
thing seems to agree within uncertainties, but it may suggest
to look again for a Primakoff measurement.
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3.2 Results

After defining the set of data we will use, we report on our
results. We start fitting with a PL

1 (Q2) sequence. We reach
L = 7 and we show it in Fig. 1 as a green-dashed line. The
smaller plot in Fig. 1 is a zoom into the time-like region. The
obtained LEPs are collected in Table 2 and shown in Fig. 2
together with our previous results (empty orange) when only
space-like data were included in our fits [4]. The stability
observed for the LEPs with the PL

1 (Q2) sequence is remark-
able, and the impact of the inclusion of time-like data is clear
since not only allows us to reach higher precision on each PA
but also to enlarge our PA sequence by 2 elements. The sta-
bility of the result is also clearer and reached earlier, reduces
our systematic error, and shows the ability of our method to
extract, for the first time, the LEPs from a combined fit to all
the available data. The coefficients of the best fitted PL

1 (Q2)

can be found in Appendix A.

Fig. 1 η-TFF best fits. Green-dashed line shows our best PL
1 (Q2) fit

and black line our best PN
N (Q2) fit. Experimental data points in the

space-like region are from CELLO (red circles) [9], CLEO (purple tri-
angles) [10], and BABAR (orange squares) [37] Collaborations. Exper-
imental data points in the time-like region are from NA60 (blue stars)
[11], A2 2011 (dark-green squares) [12], and A2 2013 (empty-green
circles) [14]. The inner plot shows a zoom into the time-like region

Table 2 Low-energy parameters for the η TFF obtained from the PA
fits to experimental data

η TFF

N bη cη dη χ2/dof

PN
1 (Q2) 7 0.575 (16) 0.338 (22) 0.198 (21) 0.6

PN
N (Q2) 2 0.576 (15) 0.340 (20) 0.201 (19) 0.6

Final 0.576 (11) 0.339 (15) 0.200 (14)

The first column indicates the type of sequence used for the fit and N
is its highest order. The last row shows the weighted average result for
each LEP. We also present the quality of the fits in terms of χ2/DOF
(degrees of freedom). Errors are only statistical and symmetrical

To reproduce the asymptotic behavior of the TFF, we have
also considered the PN

N (Q2) sequence (second row in Table
2). The results obtained are in very nice agreement with our
previous determinations. The best fit is shown as black-solid
line in Fig. 1. We reach N = 2. Since these approximants
contain the correct high-energy behavior built-in, they can be
extrapolated up to infinity (black-dashed line in Fig. 1) and
then predict the leading 1/Q2 coefficient:

lim
Q2→∞

Q2Fηγ ∗γ (Q2) = 0.177+0.020
−0.009 GeV . (4)

This prediction, although larger than in our previous
work [4], still cannot be satisfactorily compared with the
BABAR time-like measurement at q2 = 112 GeV2,
Fηγ ∗γ (112 GeV2) = 0.229(30)(8) GeV [35]. The impact
of such a discrepancy on η–η′ mixing is discussed in the next
section.

Our combined weighted average results from Table 2, tak-
ing into account both types of PA sequences, give

⎧
⎪⎨

⎪⎩

bη = 0.576(11)stat(4)sys

cη = 0.339(15)stat(5)sys

dη = 0.200(14)stat(18)sys

(5)

where the second error is systematic (around 0.7, 1.5, and
9 % for bP , cP , and dP , respectively, from Table 1).

Equation (5) can be compared with bη = 0.60(6)stat(3)sys,
cη = 0.37(10)stat(7)sys using space-like data exclusively [4].
As expected, not only statistical results have been improved
but also systematics, both by an order of magnitude, yielding
the most precise slope determination ever.

Our slope is compared with experimental determinations
from [8–14] together with theoretical extraction from [1–7]
in Fig. 3.

One should notice that all the previous collaborations used
a VMD model fit to extract the slope. In order to be consis-
tent when comparing with our results, a systematic error of
about 40 % should be added to the experimental determina-
tions based on space-like data [4,30], and a systematic error
of about 5 % should be added to the experimental determi-
nations based on time-like data (see Appendix B for further
details).

When comparing different theoretical extractions of the
slope of the η TFF with our result in Fig. 3, we find a pretty
good agreement with the exception of the results in Ref. [3]
that reported bη = 0.546(9) and bη = 0.521(2) using res-
onance chiral theory with one- or two-octet ansätze. The
disagreement is between 2 and 5 standard deviations. Ref-
erence [3] uses resonance chiral theory, which is based on
large-Nc arguments, to extract LEPs. Going from large-Nc
to Nc = 3 imposes a systematic error [33,44–46]. Since
Ref. [3] considered two approximations for fitting the η TFF

123

Final results:



Application to η TFF including time-like data●

Eur. Phys. J. C   (2015) 75:414 Page 7 of 16  414 

Table 3 Role of the different sets of experimental data in determining slope and asymptotic values of the η TFF

Data range PL
1 (Q2) PN

N (Q2)

(GeV2) L bη N bη lim
Q2→∞

Q2Fηγ ∗γ (Q2)

CELLO [9] 0.62 to 2.23 2 0.48 (20) 1 0.427 (66) 0.193 (30)

CLEO [10] 1.73 to 12.74 3 0.73 (12) 1 0.522 (19) 0.157 (5)

BABAR [37] 4.47 to 34.38 4 0.53 (9) 1 0.509 (14) 0.162 (3)

CELLO+CLEO [9,10] 0.62 to 12.74 3 0.65 (9) 2 0.704 (87) 0.25 (10)

SL 0.62 to 34.38 5 0.58 (6) 2 0.66 (10) 0.161 (24)

A2-11+A2-13 [12,14] −0.212 to −0.002 2 0.475 (76) 1 0.551 (40) 0.149 (11)

NA60 [11] −0.221 to −0.053 3 0.640 (77) 1 0.582 (19) 0.141 (5)

TL −0.221 to −0.002 3 0.565 (87) 1 0.576 (17) 0.143 (5)

CELLO [9]+TL −0.221 to 2.23 5 0.531 (39) 2 0.533 (30) 0.203 (58)

CELLO+CLEO [9,10]+TL −0.221 to 12.74 6 0.567 (22) 1 0.550 (13) 0.152 (3)

A2-11+A2-13 [12,14]+SL −0.212 to 34.38 7 0.561 (35) 2 0.569 (28) 0.178 (16)

TL+SL −0.221 to 34.38 7 0.575 (16) 2 0.576 (15) 0.177 (15)

SL refers the space-like data set, i.e., data from CELLO+CLEO+BABAR [9,10,37] Collaborations, and TL refers to the time-like data set, i.e., data
from NA60+A2-11+A2-13 [11,12,14] Collaborations. Bold numbers are our final result. No systematic errors included

3.4 The role played by high-energy space-like data

Low-energy parameters are defined at zero momentum trans-
fer. When extracting them from our fits, one would expect
the low-energy data to dominate. We noticed, however, that
in order to reach large PA sequences (leading to more pre-
cise extractions), the high-energy data is also important as
can be seen in Fig. 1. From 5 to 35 GeV2 data are basi-
cally dominated by the BABAR measurement [37] and that
has a clear implication on the extraction of the asymptotic
limQ2→∞ Q2Fηγ ∗γ (Q2) value as can be seen in Table 3,
where the role of data from each collaboration is reported.
Indeed, a fit exclusively to BABAR data yields similar results
for both slope and asymptotic value than when consider-
ing the full set of space-like data. However, a fit to the data
from the CELLO [9] Collaboration which range only up to
2.23 GeV2 yields much larger asymptotic value (although
statistically compatible). Considering only data from the
CLEO [10] Collaboration, which ranges up to 12.74 GeV2,
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N (Q2) sequence and determin-
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In view of the puzzle of the π0 TFF between BABAR [49]
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such measurements.

On the other side, time-like data can also be used to pre-
dict the asymptotic value, even though the range of data is
much shorter and much closer to Q2 = 0. From the three

sets of time-like data used in our fits, A2-11 [12] and A2-
13 [14] are based on the η → e+e−γ and covers larger
range of phase space. The NA60 [11] Collaboration, based
on the η → µ+µ−γ , covers a shorter range but in the higher-
energy region. The asymptotic values extracted from the dif-
ference time-like sets of data agree rather well but disagree
with the results obtained from the space-like data (although
overlapping within errors). Whatever the combination of dif-
ferent data sets selected, BABAR data always decides on the
asymptotic value. In passing, we notice that any of the con-
figurations considered so far agrees with the results of the η

TFF measurement from BABAR [35].

4 η transition form factor: applications

As stated in the introduction, TFF are not also interesting
by themselves but also for the range of scenarios where they
play a crucial role. In this section we consider a few of such
applications.

4.1 Reanalysis of the η–η′ mixing parameters

In this subsection we briefly summarize the main elements
to extract the mixing parameters exclusively from our fits to
the form factor data.

As was done in Ref. [4], we analyze η–η′ mixing using the
quark-flavor basis. In this basis, the η and η′ decay constants
are parametrized as

(
Fq

η Fs
η

Fq
η′ Fs

η′

)

=
(
Fq cos φq −Fs sin φs
Fq sin φq Fs cos φs

)
, (6)
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η,η’→γγ decay widths (TFFs @ Q2=0, space-like data only):

�pred
⌘!�� = (0.41± 0.18)keV

�PDG
⌘!�� = (0.51± 0.03)keV �PDG

⌘0!�� = (4.34± 0.14)keV

�pred
⌘0!�� = (4.21± 0.43)keV

Asymptotic values (TFFs @ Q2→∞):

determination of η-η’ mixing parameters

disagrees with BABAR
@112 GeV (time-like)

agrees with BABAR
@112 GeV (time-like)
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3.2 Results

After defining the set of data we will use, we report on our
results. We start fitting with a PL

1 (Q2) sequence. We reach
L = 7 and we show it in Fig. 1 as a green-dashed line. The
smaller plot in Fig. 1 is a zoom into the time-like region. The
obtained LEPs are collected in Table 2 and shown in Fig. 2
together with our previous results (empty orange) when only
space-like data were included in our fits [4]. The stability
observed for the LEPs with the PL

1 (Q2) sequence is remark-
able, and the impact of the inclusion of time-like data is clear
since not only allows us to reach higher precision on each PA
but also to enlarge our PA sequence by 2 elements. The sta-
bility of the result is also clearer and reached earlier, reduces
our systematic error, and shows the ability of our method to
extract, for the first time, the LEPs from a combined fit to all
the available data. The coefficients of the best fitted PL

1 (Q2)

can be found in Appendix A.

Fig. 1 η-TFF best fits. Green-dashed line shows our best PL
1 (Q2) fit

and black line our best PN
N (Q2) fit. Experimental data points in the

space-like region are from CELLO (red circles) [9], CLEO (purple tri-
angles) [10], and BABAR (orange squares) [37] Collaborations. Exper-
imental data points in the time-like region are from NA60 (blue stars)
[11], A2 2011 (dark-green squares) [12], and A2 2013 (empty-green
circles) [14]. The inner plot shows a zoom into the time-like region

Table 2 Low-energy parameters for the η TFF obtained from the PA
fits to experimental data

η TFF

N bη cη dη χ2/dof

PN
1 (Q2) 7 0.575 (16) 0.338 (22) 0.198 (21) 0.6

PN
N (Q2) 2 0.576 (15) 0.340 (20) 0.201 (19) 0.6

Final 0.576 (11) 0.339 (15) 0.200 (14)

The first column indicates the type of sequence used for the fit and N
is its highest order. The last row shows the weighted average result for
each LEP. We also present the quality of the fits in terms of χ2/DOF
(degrees of freedom). Errors are only statistical and symmetrical

To reproduce the asymptotic behavior of the TFF, we have
also considered the PN

N (Q2) sequence (second row in Table
2). The results obtained are in very nice agreement with our
previous determinations. The best fit is shown as black-solid
line in Fig. 1. We reach N = 2. Since these approximants
contain the correct high-energy behavior built-in, they can be
extrapolated up to infinity (black-dashed line in Fig. 1) and
then predict the leading 1/Q2 coefficient:

lim
Q2→∞

Q2Fηγ ∗γ (Q2) = 0.177+0.020
−0.009 GeV . (4)

This prediction, although larger than in our previous
work [4], still cannot be satisfactorily compared with the
BABAR time-like measurement at q2 = 112 GeV2,
Fηγ ∗γ (112 GeV2) = 0.229(30)(8) GeV [35]. The impact
of such a discrepancy on η–η′ mixing is discussed in the next
section.

Our combined weighted average results from Table 2, tak-
ing into account both types of PA sequences, give

⎧
⎪⎨

⎪⎩

bη = 0.576(11)stat(4)sys

cη = 0.339(15)stat(5)sys

dη = 0.200(14)stat(18)sys

(5)

where the second error is systematic (around 0.7, 1.5, and
9 % for bP , cP , and dP , respectively, from Table 1).

Equation (5) can be compared with bη = 0.60(6)stat(3)sys,
cη = 0.37(10)stat(7)sys using space-like data exclusively [4].
As expected, not only statistical results have been improved
but also systematics, both by an order of magnitude, yielding
the most precise slope determination ever.

Our slope is compared with experimental determinations
from [8–14] together with theoretical extraction from [1–7]
in Fig. 3.

One should notice that all the previous collaborations used
a VMD model fit to extract the slope. In order to be consis-
tent when comparing with our results, a systematic error of
about 40 % should be added to the experimental determina-
tions based on space-like data [4,30], and a systematic error
of about 5 % should be added to the experimental determi-
nations based on time-like data (see Appendix B for further
details).

When comparing different theoretical extractions of the
slope of the η TFF with our result in Fig. 3, we find a pretty
good agreement with the exception of the results in Ref. [3]
that reported bη = 0.546(9) and bη = 0.521(2) using res-
onance chiral theory with one- or two-octet ansätze. The
disagreement is between 2 and 5 standard deviations. Ref-
erence [3] uses resonance chiral theory, which is based on
large-Nc arguments, to extract LEPs. Going from large-Nc
to Nc = 3 imposes a systematic error [33,44–46]. Since
Ref. [3] considered two approximations for fitting the η TFF
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Quark-flavour basis:

pseudoscalar decay constants

large-Nc limit:

Decay widths:

Asymptotic expressions:

7

lated from Eq. (2), allow for the analysis of ⌘-⌘0 mixing.
This study can be performed either in the octet-singlet
basis, where the physical states are constructed employ-
ing the octet and singlet states, or the quark-flavour ba-
sis, through the flavour states |⌘qi ⌘ (|uūi + |dd̄i)/p2
and |⌘si ⌘ |ss̄i. In both cases, the leading 1/Q2 coef-
ficients and the normalization of the TFFs at zero, are
written as functions of the di↵erent four pseudoscalar de-

cay constants, defined as h0|A(a,i)
µ |⌘(0)(p)i = i

p
2F (a,i)

⌘(0)
pµ,

where a = 8, 0 or i = q, s depending on the chosen basis3.
For the reason explained below, we analyze ⌘-⌘0 mixing
using the quark-flavour basis [48–60]. In this basis, the
⌘ and ⌘0 decay constants are parametrized as

 
F q
⌘ F s

⌘

F q
⌘0 F s

⌘0

!
=

 
Fq cos�q �Fs sin�s
Fq sin�s Fs cos�s

!
, (6)

where Fq,s are the light-quark and strange pseudoscalar
decay constants, respectively, and �q,s the related mixing
angles. Several phenomenological analyses find �q ' �s,
which is also supported by large-Nc ChPT calculations
where the di↵erence between these two angles is seen to
be proportional to an OZI-rule violating parameter and
hence small [48, 56]. This assumption, �q = �s ⌘ �, is
also a requirement of the FKS scheme [50, 52].

Within this approximation, the asymptotic limits of
the TFFs take the form

lim
Q2!1

Q2F⌘�⇤�(Q
2) = 2(ĉqF

q
⌘ + ĉsF

s
⌘ )

= 2(ĉqFq cos�� ĉsFs sin�) ,
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Q2F⌘0�⇤�(Q
2) = 2(ĉqF

q
⌘0 + ĉsF

s
⌘0)

= 2(ĉqFq sin�+ ĉsFs cos�) ,

(7)

and their normalization at zero
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4⇡2
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Fs

cos�
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,

(8)

with ĉq = 5/3 and ĉs =
p
2/3.

Using Eqs. (7) and (8), one can attempt to predict the
mixing parameters in the quark-flavour basis, that is, the

3 The axial-vector currents are defined as Aa
µ = q̄�µ�5

�ap
2
q, with

Aq
µ = 1p

2
(ū�µ�5u + d̄�µ�5d) = 1p

3
(A8

µ +
p
2A0

µ) and As
µ =

s̄�µ�5s = 1p
3
(A0

µ �
p
2A8

µ).

two decay constants, Fq and Fs, and the single mixing
angle �, with the results obtained in our fits. However,
only three of the four equations are independent, so, we
have to choose the set of three equations that will be used
to get the three mixing parameters. Our choice is based
on the precision achieved by the PAs. While for the ⌘0

TFF the PN
N (Q2) sequence reaches only the N = 1 ele-

ment, with the consequent lack of stability checks and big
uncertainties discussed above, the ⌘ TFF reaches N = 2
(when the measured two-photon partial widths are in-
cluded in the fits), where the stabilization is attained and
the uncertainty of the fitted parameters reduced. Accord-
ingly, we do not recommend to use the asymptotic limit
of the ⌘0 TFF to extract the mixing parameters. For the
same reason, confident results for these parameters will
be only obtained in the case of including the two-photon
partial widths in the fits. Nevertheless, for the sake of
comparison, we will explore all the di↵erent possibilities
for extracting such parameters.
We start considering our best scenario in terms of con-

fidence and precision. For the normalization at zero
of both TFFs we use |F⌘��(0)|exp = 0.274(5) GeV�1

and |F⌘0��(0)|exp = 0.344(6) GeV�1 from the measured
decay widths �⌘!�� = 0.516(18) keV and �⌘0!�� =
4.35(14) keV, respectively, and for the asymptotic value
of the ⌘ TFF we take the value shown in Eq. (4),
limQ2!1 Q2F⌘�⇤�(Q2) = 0.164(21) GeV. With these val-
ues, the mixing parameters are predicted to be

Fq/F⇡ = 1.07(1) , Fs/F⇡ = 1.53(23) ,

� = 40.2(1.6)� ,
(9)

with F⇡ = 92.21(14) MeV [32]. These values represent a
second important result of this work. They can be com-
pared, for instance, with the determination of the mix-
ing parameters obtained in Ref. [56], Fq/F⇡ = 1.10(3),
Fs/F⇡ = 1.66(6) and � = 40.6(0.9)�, after a careful
analysis of V ! ⌘(0)�, ⌘(0) ! V �, with V = ⇢,!,�,
and ⌘(0) ! �� decays, and the ratio RJ/ ⌘ �(J/ !
⌘0�)/�(J/ ! ⌘�). An update of the former values tak-
ing into account the latest experimental measurements
of these decays gives Fq/F⇡ = 1.07(1), Fs/F⇡ = 1.63(3)
and � = 39.6(0.4)�. An older phenomenological analy-
sis based on the FKS scheme leads to Fq/F⇡ = 1.07(3),
Fs/F⇡ = 1.34(6) and � = 39.3(1.0)� [50] (see Ref. [52] for
a compendium of di↵erent results). The agreement be-
tween these determinations and the values in Eq. (10) is
quite impressive since we only use the information of the
TFFs to predict the mixing parameters. These predic-
tions include a systematic error from the fit procedure.
In particular, we ascribe a 1% error to the P 2

2

(Q2) used
in the fit.

If instead of using the asymptotic value of the ⌘ TFF
for the study of ⌘-⌘0 mixing, we use the asymptotic value
of the ⌘0 TFF in Eq. (4), the following results are found

Fq/F⇡ = 1.01(2) , Fs/F⇡ = 0.95(4) ,

� = 33.2(0.7)� ,
(10)
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ĉqF s

⌘ � ĉsF q
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q
⌘0 + ĉsF
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with ĉq = 5/3 and ĉs =
p
2/3.
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two decay constants, Fq and Fs, and the single mixing
angle �, with the results obtained in our fits. However,
only three of the four equations are independent, so, we
have to choose the set of three equations that will be used
to get the three mixing parameters. Our choice is based
on the precision achieved by the PAs. While for the ⌘0

TFF the PN
N (Q2) sequence reaches only the N = 1 ele-

ment, with the consequent lack of stability checks and big
uncertainties discussed above, the ⌘ TFF reaches N = 2
(when the measured two-photon partial widths are in-
cluded in the fits), where the stabilization is attained and
the uncertainty of the fitted parameters reduced. Accord-
ingly, we do not recommend to use the asymptotic limit
of the ⌘0 TFF to extract the mixing parameters. For the
same reason, confident results for these parameters will
be only obtained in the case of including the two-photon
partial widths in the fits. Nevertheless, for the sake of
comparison, we will explore all the di↵erent possibilities
for extracting such parameters.
We start considering our best scenario in terms of con-

fidence and precision. For the normalization at zero
of both TFFs we use |F⌘��(0)|exp = 0.274(5) GeV�1

and |F⌘0��(0)|exp = 0.344(6) GeV�1 from the measured
decay widths �⌘!�� = 0.516(18) keV and �⌘0!�� =
4.35(14) keV, respectively, and for the asymptotic value
of the ⌘ TFF we take the value shown in Eq. (4),
limQ2!1 Q2F⌘�⇤�(Q2) = 0.164(21) GeV. With these val-
ues, the mixing parameters are predicted to be

Fq/F⇡ = 1.07(1) , Fs/F⇡ = 1.53(23) ,

� = 40.2(1.6)� ,
(9)

with F⇡ = 92.21(14) MeV [32]. These values represent a
second important result of this work. They can be com-
pared, for instance, with the determination of the mix-
ing parameters obtained in Ref. [56], Fq/F⇡ = 1.10(3),
Fs/F⇡ = 1.66(6) and � = 40.6(0.9)�, after a careful
analysis of V ! ⌘(0)�, ⌘(0) ! V �, with V = ⇢,!,�,
and ⌘(0) ! �� decays, and the ratio RJ/ ⌘ �(J/ !
⌘0�)/�(J/ ! ⌘�). An update of the former values tak-
ing into account the latest experimental measurements
of these decays gives Fq/F⇡ = 1.07(1), Fs/F⇡ = 1.63(3)
and � = 39.6(0.4)�. An older phenomenological analy-
sis based on the FKS scheme leads to Fq/F⇡ = 1.07(3),
Fs/F⇡ = 1.34(6) and � = 39.3(1.0)� [50] (see Ref. [52] for
a compendium of di↵erent results). The agreement be-
tween these determinations and the values in Eq. (10) is
quite impressive since we only use the information of the
TFFs to predict the mixing parameters. These predic-
tions include a systematic error from the fit procedure.
In particular, we ascribe a 1% error to the P 2

2

(Q2) used
in the fit.

If instead of using the asymptotic value of the ⌘ TFF
for the study of ⌘-⌘0 mixing, we use the asymptotic value
of the ⌘0 TFF in Eq. (4), the following results are found

Fq/F⇡ = 1.01(2) , Fs/F⇡ = 0.95(4) ,

� = 33.2(0.7)� ,
(10)
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angle �, with the results obtained in our fits. However,
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where Fq,s are the light-quark and strange pseudoscalar
decay constants, respectively, and φq,s the related mixing
angles. Several phenomenological analyses find φq ≃ φs ,
which is also supported by large-Nc ChPT calculations where
the difference between these two angles is seen to be propor-
tional to an OZI-rule violating parameter and hence small
[36,51].

Within this approximation, the asymptotic limits of the
TFFs take the form

lim
Q2→∞

Q2Fηγ ∗γ (Q2) = 2(ĉq Fq
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= 2(ĉq Fq cos φ − ĉs Fs sin φ),
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2) = 2(ĉq F

q
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η′)

= 2(ĉq Fq sin φ + ĉs Fs cos φ), (7)

and their normalization at zero (from the chiral anomaly and
Eq. (2))
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q
η′

Fs
η′F

q
η − Fq

η′Fs
η

)

= 1
4π2

(
ĉq
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ĉq Fs

η − ĉs F
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(8)

with ĉq = 5/3 and ĉs =
√

2/3.
Experimental information provides |Fηγ γ (0)|exp = 0.274

(5)GeV−1 and |Fη′γ γ (0)|exp = 0.344 (6)GeV−1 and for the
asymptotic value of the η TFF we take the value shown in
Eq. (4) with symmetrical errors, limQ2→∞ Q2Fηγ ∗γ (Q2) =
0.177 (15) GeV. With these values, the mixing parameters
are predicted to be

Fq/Fπ = 1.07 (1), Fs/Fπ = 1.39 (14), φ = 39.3 (1.2)◦,

(9)

with Fπ = 92.21 (14) MeV [42]. The uncertainties are dom-
inated by the error from the asymptotic value prediction.

One can translate the mixing parameters obtained in the
flavor bases into the octet–singlet one by the following
recipe [52]:

F2
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s

3
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s
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.

(10)

where
(
F8
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η

F8
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η′

)

=
(
F8 cos θ8 −F0 sin θ0
F8 sin θ8 F0 cos θ0

)
, (11)

represents the admixture of the η and η′ decay constants in
terms of the octet and singlet one.

These relations, Eqs. (10), are very useful since, as
observed in Ref. [53] and recently discussed in [54], the sin-
glet decay constant F0 is renormalization-scale dependent:

µ dF0
dµ = −NF

(
αs (µ)

π

)2
F0

−→ F0(µ) = F0(µ0)
(

1 + 2NF
β0

(
αs (µ)

π − αs (µ0)
π

))

= F0(µ0) (1 + δ) ,

(12)

with β0 = 11Nc
3 − 2

3 NF , Nc the number of colors, NF the
number of active flavors at each scale, and µ the renormal-
ization scale, with µ0 = 1 GeV a reference point close to the
η′ mass.

To include this effect in our results it is convenient to work
it out in the singlet–octet basis for later on translate it into the
flavor one using Eq. (10). As such, the asymptotic behavior
equations (7) shift to

lim
Q2→∞

Q2Fηγ ∗γ (Q2)

= 2(ĉq(1 + 4δ/5)Fq cos φ − ĉs(1 + 2δ)Fs sin φ),

lim
Q2→∞

Q2Fη′γ ∗γ (Q
2)

= 2(ĉq(1 + 4δ/5)Fq sin φ + ĉs(1 + 2δ)Fs cos φ). (13)

Assuming asymptotic freedom for αs(µ), the phenomeno-
logical input αs(Mz) = 0.1185 [42], and the renormalization
group equation for αs(µ), we determine αs(µ0 = 1 GeV) =
0.48, including up to four loop corrections and threshold
effects for its running5. With such values and Eq. (12) we
determine δ = −0.17. Using (10) to go back to the flavor
basis we obtain as our final mixing parameters, representing
one of the main results of this work:

inputs : Fηγ γ (0), Fη′γ γ (0), asymp η

⇒ Fq/Fπ = 1.07(2), Fs/Fπ = 1.29(16), φ = 38.3(1.6)◦,
inputs : Fηγ γ (0), Fη′γ γ (0), asymp η′

⇒ Fq/Fπ = 1.06(1), Fs/Fπ = 1.63(8), φ = 41.1(0.8)◦,
(14)

when taking the η(η′) asymptotic behavior, respectively, as
part of the subset of equations to be solved (8,13). We stress
that corrections from δ are bigger for the η′ case, as the singlet

5 Particular details of the αs running are irrelevant at the precision we
are working.
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where Fq,s are the light-quark and strange pseudoscalar
decay constants, respectively, and φq,s the related mixing
angles. Several phenomenological analyses find φq ≃ φs ,
which is also supported by large-Nc ChPT calculations where
the difference between these two angles is seen to be propor-
tional to an OZI-rule violating parameter and hence small
[36,51].

Within this approximation, the asymptotic limits of the
TFFs take the form

lim
Q2→∞

Q2Fηγ ∗γ (Q2) = 2(ĉq Fq
η + ĉs Fs

η )

= 2(ĉq Fq cos φ − ĉs Fs sin φ),

lim
Q2→∞

Q2Fη′γ ∗γ (Q
2) = 2(ĉq F

q
η′ + ĉs Fs

η′)

= 2(ĉq Fq sin φ + ĉs Fs cos φ), (7)

and their normalization at zero (from the chiral anomaly and
Eq. (2))

Fηγ γ (0) =
1

4π2

(
ĉq Fs

η′ − ĉs F
q
η′

Fs
η′F

q
η − Fq

η′Fs
η

)

= 1
4π2

(
ĉq
Fq

cos φ − ĉs
Fs

sin φ

)
,

Fη′γ γ (0) =
1

4π2

(
ĉq Fs

η − ĉs F
q
η

Fq
η Fs

η′ − Fs
η F

q
η′

)

= 1
4π2

(
ĉq
Fq

sin φ + ĉs
Fs

cos φ

)
,

(8)

with ĉq = 5/3 and ĉs =
√

2/3.
Experimental information provides |Fηγ γ (0)|exp = 0.274

(5)GeV−1 and |Fη′γ γ (0)|exp = 0.344 (6)GeV−1 and for the
asymptotic value of the η TFF we take the value shown in
Eq. (4) with symmetrical errors, limQ2→∞ Q2Fηγ ∗γ (Q2) =
0.177 (15) GeV. With these values, the mixing parameters
are predicted to be

Fq/Fπ = 1.07 (1), Fs/Fπ = 1.39 (14), φ = 39.3 (1.2)◦,

(9)

with Fπ = 92.21 (14) MeV [42]. The uncertainties are dom-
inated by the error from the asymptotic value prediction.

One can translate the mixing parameters obtained in the
flavor bases into the octet–singlet one by the following
recipe [52]:

F2
8 =

F2
q + 2F2

s

3
, F2

0 =
2F2

q + F2
s

3
,

θ8 = φ − arctan

(√
2Fs
Fq

)

, θ0 = φ − arctan

(√
2Fq
Fs

)

.

(10)

where
(
F8

η F0
η

F8
η′ F0

η′

)

=
(
F8 cos θ8 −F0 sin θ0
F8 sin θ8 F0 cos θ0

)
, (11)

represents the admixture of the η and η′ decay constants in
terms of the octet and singlet one.

These relations, Eqs. (10), are very useful since, as
observed in Ref. [53] and recently discussed in [54], the sin-
glet decay constant F0 is renormalization-scale dependent:

µ dF0
dµ = −NF

(
αs (µ)

π

)2
F0

−→ F0(µ) = F0(µ0)
(

1 + 2NF
β0

(
αs (µ)

π − αs (µ0)
π

))

= F0(µ0) (1 + δ) ,

(12)

with β0 = 11Nc
3 − 2

3 NF , Nc the number of colors, NF the
number of active flavors at each scale, and µ the renormal-
ization scale, with µ0 = 1 GeV a reference point close to the
η′ mass.

To include this effect in our results it is convenient to work
it out in the singlet–octet basis for later on translate it into the
flavor one using Eq. (10). As such, the asymptotic behavior
equations (7) shift to

lim
Q2→∞

Q2Fηγ ∗γ (Q2)

= 2(ĉq(1 + 4δ/5)Fq cos φ − ĉs(1 + 2δ)Fs sin φ),

lim
Q2→∞

Q2Fη′γ ∗γ (Q
2)

= 2(ĉq(1 + 4δ/5)Fq sin φ + ĉs(1 + 2δ)Fs cos φ). (13)

Assuming asymptotic freedom for αs(µ), the phenomeno-
logical input αs(Mz) = 0.1185 [42], and the renormalization
group equation for αs(µ), we determine αs(µ0 = 1 GeV) =
0.48, including up to four loop corrections and threshold
effects for its running5. With such values and Eq. (12) we
determine δ = −0.17. Using (10) to go back to the flavor
basis we obtain as our final mixing parameters, representing
one of the main results of this work:

inputs : Fηγ γ (0), Fη′γ γ (0), asymp η

⇒ Fq/Fπ = 1.07(2), Fs/Fπ = 1.29(16), φ = 38.3(1.6)◦,
inputs : Fηγ γ (0), Fη′γ γ (0), asymp η′

⇒ Fq/Fπ = 1.06(1), Fs/Fπ = 1.63(8), φ = 41.1(0.8)◦,
(14)

when taking the η(η′) asymptotic behavior, respectively, as
part of the subset of equations to be solved (8,13). We stress
that corrections from δ are bigger for the η′ case, as the singlet

5 Particular details of the αs running are irrelevant at the precision we
are working.
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Fig. 5 Mixing parameters of the η–η′ system in the flavor basis from different references

Fig. 6 Mixing parameters of
the η–η′ system in the
octet–singlet basis from
different references

Brodsky and Lepage is not yet reached at such energies and
a systematic error is done in assuming duality [35].

In Ref. [35], BABAR collaboration studied the process
e+e− → γ ∗ → η(

′)γ at the center-of-mass energy
√
s =

10.58 GeV. They measured its cross section and using its
relation with the TFF, obtained the absolute value of the time-
like TFF at Q2 = −s = −112 GeV2, |Q2Fηγ ∗γ (Q2)| =
(0.229±0.031)GeV and |Q2Fη′γ ∗γ (Q2)| = (0.251±0.021)
GeV, where statical and systematic uncertainties are added
in quadrature.

A kinematic factor K 3
P with KP = 1− M2

P
s (see [56]) was

missing inBABAR expressions. This correction leavesBABAR
published results almost untouched. This small shift together
with the duality argument [35] results in a prediction of the
TFF at Q2 = 112 GeV2:

|Q2Fηγ ∗γ (Q2)|Q2=+112 GeV2 = (0.231 ± 0.031) GeV,

|Q2Fη′γ ∗γ (Q
2)|Q2=+112 GeV2 = (0.254 ± 0.021) GeV.

(18)

One is tempted to include these time-like measurements
transformed into space-like predictions Eq. (18) into our

fits, after assuming that at this high momentum transfer,
the duality between time- and space-like holds and no extra
error should be included. For the η TFF fits, its inclusion
will mainly modify the asymptotic prediction growing up its
value up to limQ2→∞ Q2Fηγ ∗γ (Q2) = 0.247 GeV, higher
than the BABAR result, with a good reduced χ2 < 1. This,
by itself, already indicates that at Q2 = 112 GeV2 the
asymptotic regime is not yet reached. Curiously enough,
the value of the fit function at Q2 = −112 GeV2 is
|Q2Fηγ ∗γ (Q2)|Q2=+112 GeV2 = 0.219 GeV, below (18).
Even worse is the prediction of our fit function for the
time-like counterpart, i.e., |Q2Fηγ ∗γ (Q2) |Q2=−112 GeV2 =
0.307 GeV. This exercise shows that the assumption of
asymptotic regime at 112 GeV2 has an error of about 15 %
in our fits, a theoretical error that should be added to BABAR
results when used in the space-like region. A recent anal-
ysis of the pseudoscalar TFF based on perturbative correc-
tions [54] concludes that the difference between the time-
and space-like form factors at |Q2| = 112 GeV2 can be
of the order of 5–13 % for different pseudoscalar distribu-
tion amplitudes, and can be enhanced by Sudakov-type cor-
rections (see [57] for details). The Regge model defined in
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Ref. [4] also suggests a departure from duality of about 15 to
20 % at |Q2| = 112 GeV2. It is, however, difficult to calcu-
late that error and hence difficult to ascribe it to the BABAR
determination.

Interestingly enough, to check the eventual departure aris-
ing from duality violations, one could artificially enhance
BABAR error just to cross-check its order of magnitude.
Increasing the error in Eq. (18) from 0.031 GeV2 to
0.051 GeV2 (adding in quadrature a 1.3σ ) and refitting again,
we obtain, with somewhat betterχ2, the result that the asymp-
totic predicted value would then be limQ2→∞ Q2Fηγ ∗γ (Q2)

= 0.193 GeV, the fit value at Q2 = −112 GeV2 would
read 0.187 GeV, but also our time-like prediction at Q2 =
112 GeV2 would read 0.199 GeV, essentially satisfying the
initial assumption that time- and space-like TFF coincide at
112 GeV2. The error we had to artificially add to reach at that
conclusion is around a 20 %, which agrees with our previous
statements and also with [54]. Of course, adding this 20 %
error in Eq. (16) solve what we call BABAR puzzle.

A 15 % departure from the asymptotic limit may seem too
large for that high momentum transfer. Notice [54,57] that
due to its nature, TFF are a convolution of a perturbative
hard-scattering amplitude and a gauge-invariant meson dis-
tribution amplitude (DA) [58] which incorporates the nonper-
turbative dynamics of the QCD bound-state [38]. That means
that even for large Q2 well inside the asymptotic region, soft
scales coming from the Fock decomposition can enhance the
TFF. These soft corrections depend on the broadness of the
DA. At low energies, our fits suggest the typical hadronic
scale for the η TFF to be lower than the η′ counterpart. Being
the η′ more contaminated by ss̄ content (and less from other
Fock states), one would expect its hadronic scale to be close
to the φ meson mass, around 1 GeV. This is in fact what we
find, and indicates a narrower DA for the η′, dominated by a
qq̄ state, explaining at once why the duality arguments hold
better than in the η case. This argument complements the one
discussed in [54] from the perturbative study of the TFFs.

Even larger error should be added to duality arguments at
lower energies, such as the measurement of the CLEO Col-
laboration of the same cross section but at

√
s = 3.773 GeV,

and forthcoming measurements by the BES-III Collaboration
at

√
s = 4.26 GeV.

For all these reasons, we chose not to use these BABAR
measurements in the time-like region in our fits.

4.3 A prediction for the V Pγ couplings

In this subsection, we extend our analysis to the vector–
pseudoscalar electromagnetic form factors. In particular, we
are interested in the couplings of the radiative decays of
lowest-lying vector mesons into η or η′, i.e., V → (η, η′)γ ,
and of the radiative decays η′ → V γ , with V = ρ,ω,φ.

We follow closely the method presented in Refs. [36,59],
and we make use of the equations in Appendix A in Ref. [36]
to relate the form factors with the mixing angle and the decay
constants in the flavor basis. To account for the φ–ω mix-
ing we use φV = 3.4◦. The form factors, saturated with
the lowest-lying resonance and then assuming VMD, can be
expressed by

FV Pγ (0, 0) = fV
mV

gV Pγ , (19)

where gV Pγ are the couplings we are interested in, and fV
are the leptonic decay constants of the vector mesons and are
determined from the experimental decay rates via

((V → e+e−) = 4π

3
α2 f 2

V

mV
c2
V , (20)

with cV an electric charge factor of the quarks that make
up the vector, cV = ( 1√

2
, sin θV√

6
, cos θV√

6
) for V = ρ,ω,φ,

respectively. Here θV = φV+arctan(1/
√

2). Experimentally
we find

fρ0 = (221.2 ± 0.9)MeV,

fω = (179.9 ± 3.1)MeV,

fφ = (239.0 ± 3.8)MeV.

(21)

using ((ρ → e+e−) = 7.04(6) keV, ((ω → e+e−) =
0.60(2) keV, and ((φ → e+e−) = 1.27(4) keV from [42].

The couplings in this flavor basis are

gρηγ = 3mρ

4π2 fρ0

cos φ√
2Fq

, gρη′γ = 3mρ

4π2 fρ0

sin φ√
2Fq

,

gωηγ = mω

4π2 fω

(

cos φV
cos φ√

2Fq
− 2 sin φV

sin φ√
2Fs

)

,

gωη′γ = mω

4π2 fω

(

cos φV
sin φ√

2Fq
+ 2 sin φV

cos φ√
2Fs

)

,

gφηγ = − mφ

4π2 fφ

(

sin φV
cos φ√

2Fq
+ 2 cos φV

sin φ√
2Fs

)

,

gφη′γ = − mφ

4π2 fφ

(

sin φV
sin φ√

2Fq
− 2 cos φV

cos φ√
2Fs

)

.

(22)

where we have assumed φq = φs = φ. Table 4 collects our
predictions in its second column. Corrections due to φq ̸= φs
to these formulas can be found in Appendix A, Eq. (A.5) of
Ref. [36].

The decay widths of P → V γ and V → Pγ are

((P → V γ ) = α

8
g2
V Pγ

(
m2

P − m2
V

mP

)3

,
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Ref. [4] also suggests a departure from duality of about 15 to
20 % at |Q2| = 112 GeV2. It is, however, difficult to calcu-
late that error and hence difficult to ascribe it to the BABAR
determination.

Interestingly enough, to check the eventual departure aris-
ing from duality violations, one could artificially enhance
BABAR error just to cross-check its order of magnitude.
Increasing the error in Eq. (18) from 0.031 GeV2 to
0.051 GeV2 (adding in quadrature a 1.3σ ) and refitting again,
we obtain, with somewhat betterχ2, the result that the asymp-
totic predicted value would then be limQ2→∞ Q2Fηγ ∗γ (Q2)

= 0.193 GeV, the fit value at Q2 = −112 GeV2 would
read 0.187 GeV, but also our time-like prediction at Q2 =
112 GeV2 would read 0.199 GeV, essentially satisfying the
initial assumption that time- and space-like TFF coincide at
112 GeV2. The error we had to artificially add to reach at that
conclusion is around a 20 %, which agrees with our previous
statements and also with [54]. Of course, adding this 20 %
error in Eq. (16) solve what we call BABAR puzzle.

A 15 % departure from the asymptotic limit may seem too
large for that high momentum transfer. Notice [54,57] that
due to its nature, TFF are a convolution of a perturbative
hard-scattering amplitude and a gauge-invariant meson dis-
tribution amplitude (DA) [58] which incorporates the nonper-
turbative dynamics of the QCD bound-state [38]. That means
that even for large Q2 well inside the asymptotic region, soft
scales coming from the Fock decomposition can enhance the
TFF. These soft corrections depend on the broadness of the
DA. At low energies, our fits suggest the typical hadronic
scale for the η TFF to be lower than the η′ counterpart. Being
the η′ more contaminated by ss̄ content (and less from other
Fock states), one would expect its hadronic scale to be close
to the φ meson mass, around 1 GeV. This is in fact what we
find, and indicates a narrower DA for the η′, dominated by a
qq̄ state, explaining at once why the duality arguments hold
better than in the η case. This argument complements the one
discussed in [54] from the perturbative study of the TFFs.

Even larger error should be added to duality arguments at
lower energies, such as the measurement of the CLEO Col-
laboration of the same cross section but at

√
s = 3.773 GeV,

and forthcoming measurements by the BES-III Collaboration
at

√
s = 4.26 GeV.

For all these reasons, we chose not to use these BABAR
measurements in the time-like region in our fits.

4.3 A prediction for the V Pγ couplings

In this subsection, we extend our analysis to the vector–
pseudoscalar electromagnetic form factors. In particular, we
are interested in the couplings of the radiative decays of
lowest-lying vector mesons into η or η′, i.e., V → (η, η′)γ ,
and of the radiative decays η′ → V γ , with V = ρ,ω,φ.

We follow closely the method presented in Refs. [36,59],
and we make use of the equations in Appendix A in Ref. [36]
to relate the form factors with the mixing angle and the decay
constants in the flavor basis. To account for the φ–ω mix-
ing we use φV = 3.4◦. The form factors, saturated with
the lowest-lying resonance and then assuming VMD, can be
expressed by

FV Pγ (0, 0) = fV
mV

gV Pγ , (19)

where gV Pγ are the couplings we are interested in, and fV
are the leptonic decay constants of the vector mesons and are
determined from the experimental decay rates via

((V → e+e−) = 4π

3
α2 f 2

V

mV
c2
V , (20)

with cV an electric charge factor of the quarks that make
up the vector, cV = ( 1√

2
, sin θV√

6
, cos θV√

6
) for V = ρ,ω,φ,

respectively. Here θV = φV+arctan(1/
√

2). Experimentally
we find

fρ0 = (221.2 ± 0.9)MeV,

fω = (179.9 ± 3.1)MeV,

fφ = (239.0 ± 3.8)MeV.

(21)

using ((ρ → e+e−) = 7.04(6) keV, ((ω → e+e−) =
0.60(2) keV, and ((φ → e+e−) = 1.27(4) keV from [42].

The couplings in this flavor basis are

gρηγ = 3mρ

4π2 fρ0

cos φ√
2Fq

, gρη′γ = 3mρ

4π2 fρ0

sin φ√
2Fq

,

gωηγ = mω

4π2 fω

(

cos φV
cos φ√

2Fq
− 2 sin φV

sin φ√
2Fs

)

,

gωη′γ = mω

4π2 fω

(

cos φV
sin φ√

2Fq
+ 2 sin φV

cos φ√
2Fs

)

,

gφηγ = − mφ

4π2 fφ

(

sin φV
cos φ√

2Fq
+ 2 cos φV

sin φ√
2Fs

)

,

gφη′γ = − mφ

4π2 fφ

(

sin φV
sin φ√

2Fq
− 2 cos φV

cos φ√
2Fs

)

.

(22)

where we have assumed φq = φs = φ. Table 4 collects our
predictions in its second column. Corrections due to φq ̸= φs
to these formulas can be found in Appendix A, Eq. (A.5) of
Ref. [36].

The decay widths of P → V γ and V → Pγ are

((P → V γ ) = α

8
g2
V Pγ

(
m2

P − m2
V

mP

)3

,
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Ref. [4] also suggests a departure from duality of about 15 to
20 % at |Q2| = 112 GeV2. It is, however, difficult to calcu-
late that error and hence difficult to ascribe it to the BABAR
determination.

Interestingly enough, to check the eventual departure aris-
ing from duality violations, one could artificially enhance
BABAR error just to cross-check its order of magnitude.
Increasing the error in Eq. (18) from 0.031 GeV2 to
0.051 GeV2 (adding in quadrature a 1.3σ ) and refitting again,
we obtain, with somewhat betterχ2, the result that the asymp-
totic predicted value would then be limQ2→∞ Q2Fηγ ∗γ (Q2)

= 0.193 GeV, the fit value at Q2 = −112 GeV2 would
read 0.187 GeV, but also our time-like prediction at Q2 =
112 GeV2 would read 0.199 GeV, essentially satisfying the
initial assumption that time- and space-like TFF coincide at
112 GeV2. The error we had to artificially add to reach at that
conclusion is around a 20 %, which agrees with our previous
statements and also with [54]. Of course, adding this 20 %
error in Eq. (16) solve what we call BABAR puzzle.

A 15 % departure from the asymptotic limit may seem too
large for that high momentum transfer. Notice [54,57] that
due to its nature, TFF are a convolution of a perturbative
hard-scattering amplitude and a gauge-invariant meson dis-
tribution amplitude (DA) [58] which incorporates the nonper-
turbative dynamics of the QCD bound-state [38]. That means
that even for large Q2 well inside the asymptotic region, soft
scales coming from the Fock decomposition can enhance the
TFF. These soft corrections depend on the broadness of the
DA. At low energies, our fits suggest the typical hadronic
scale for the η TFF to be lower than the η′ counterpart. Being
the η′ more contaminated by ss̄ content (and less from other
Fock states), one would expect its hadronic scale to be close
to the φ meson mass, around 1 GeV. This is in fact what we
find, and indicates a narrower DA for the η′, dominated by a
qq̄ state, explaining at once why the duality arguments hold
better than in the η case. This argument complements the one
discussed in [54] from the perturbative study of the TFFs.

Even larger error should be added to duality arguments at
lower energies, such as the measurement of the CLEO Col-
laboration of the same cross section but at

√
s = 3.773 GeV,

and forthcoming measurements by the BES-III Collaboration
at

√
s = 4.26 GeV.

For all these reasons, we chose not to use these BABAR
measurements in the time-like region in our fits.

4.3 A prediction for the V Pγ couplings

In this subsection, we extend our analysis to the vector–
pseudoscalar electromagnetic form factors. In particular, we
are interested in the couplings of the radiative decays of
lowest-lying vector mesons into η or η′, i.e., V → (η, η′)γ ,
and of the radiative decays η′ → V γ , with V = ρ,ω,φ.

We follow closely the method presented in Refs. [36,59],
and we make use of the equations in Appendix A in Ref. [36]
to relate the form factors with the mixing angle and the decay
constants in the flavor basis. To account for the φ–ω mix-
ing we use φV = 3.4◦. The form factors, saturated with
the lowest-lying resonance and then assuming VMD, can be
expressed by

FV Pγ (0, 0) = fV
mV

gV Pγ , (19)

where gV Pγ are the couplings we are interested in, and fV
are the leptonic decay constants of the vector mesons and are
determined from the experimental decay rates via

((V → e+e−) = 4π

3
α2 f 2

V

mV
c2
V , (20)

with cV an electric charge factor of the quarks that make
up the vector, cV = ( 1√

2
, sin θV√

6
, cos θV√

6
) for V = ρ,ω,φ,

respectively. Here θV = φV+arctan(1/
√

2). Experimentally
we find

fρ0 = (221.2 ± 0.9)MeV,

fω = (179.9 ± 3.1)MeV,

fφ = (239.0 ± 3.8)MeV.

(21)

using ((ρ → e+e−) = 7.04(6) keV, ((ω → e+e−) =
0.60(2) keV, and ((φ → e+e−) = 1.27(4) keV from [42].

The couplings in this flavor basis are

gρηγ = 3mρ

4π2 fρ0

cos φ√
2Fq

, gρη′γ = 3mρ

4π2 fρ0

sin φ√
2Fq

,

gωηγ = mω

4π2 fω

(

cos φV
cos φ√

2Fq
− 2 sin φV

sin φ√
2Fs

)

,

gωη′γ = mω

4π2 fω

(

cos φV
sin φ√

2Fq
+ 2 sin φV

cos φ√
2Fs

)

,

gφηγ = − mφ

4π2 fφ

(

sin φV
cos φ√

2Fq
+ 2 cos φV

sin φ√
2Fs

)

,

gφη′γ = − mφ

4π2 fφ

(

sin φV
sin φ√

2Fq
− 2 cos φV

cos φ√
2Fs

)

.

(22)

where we have assumed φq = φs = φ. Table 4 collects our
predictions in its second column. Corrections due to φq ̸= φs
to these formulas can be found in Appendix A, Eq. (A.5) of
Ref. [36].

The decay widths of P → V γ and V → Pγ are

((P → V γ ) = α

8
g2
V Pγ

(
m2

P − m2
V

mP

)3

,
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Ref. [4] also suggests a departure from duality of about 15 to
20 % at |Q2| = 112 GeV2. It is, however, difficult to calcu-
late that error and hence difficult to ascribe it to the BABAR
determination.

Interestingly enough, to check the eventual departure aris-
ing from duality violations, one could artificially enhance
BABAR error just to cross-check its order of magnitude.
Increasing the error in Eq. (18) from 0.031 GeV2 to
0.051 GeV2 (adding in quadrature a 1.3σ ) and refitting again,
we obtain, with somewhat betterχ2, the result that the asymp-
totic predicted value would then be limQ2→∞ Q2Fηγ ∗γ (Q2)

= 0.193 GeV, the fit value at Q2 = −112 GeV2 would
read 0.187 GeV, but also our time-like prediction at Q2 =
112 GeV2 would read 0.199 GeV, essentially satisfying the
initial assumption that time- and space-like TFF coincide at
112 GeV2. The error we had to artificially add to reach at that
conclusion is around a 20 %, which agrees with our previous
statements and also with [54]. Of course, adding this 20 %
error in Eq. (16) solve what we call BABAR puzzle.

A 15 % departure from the asymptotic limit may seem too
large for that high momentum transfer. Notice [54,57] that
due to its nature, TFF are a convolution of a perturbative
hard-scattering amplitude and a gauge-invariant meson dis-
tribution amplitude (DA) [58] which incorporates the nonper-
turbative dynamics of the QCD bound-state [38]. That means
that even for large Q2 well inside the asymptotic region, soft
scales coming from the Fock decomposition can enhance the
TFF. These soft corrections depend on the broadness of the
DA. At low energies, our fits suggest the typical hadronic
scale for the η TFF to be lower than the η′ counterpart. Being
the η′ more contaminated by ss̄ content (and less from other
Fock states), one would expect its hadronic scale to be close
to the φ meson mass, around 1 GeV. This is in fact what we
find, and indicates a narrower DA for the η′, dominated by a
qq̄ state, explaining at once why the duality arguments hold
better than in the η case. This argument complements the one
discussed in [54] from the perturbative study of the TFFs.

Even larger error should be added to duality arguments at
lower energies, such as the measurement of the CLEO Col-
laboration of the same cross section but at

√
s = 3.773 GeV,

and forthcoming measurements by the BES-III Collaboration
at

√
s = 4.26 GeV.

For all these reasons, we chose not to use these BABAR
measurements in the time-like region in our fits.

4.3 A prediction for the V Pγ couplings

In this subsection, we extend our analysis to the vector–
pseudoscalar electromagnetic form factors. In particular, we
are interested in the couplings of the radiative decays of
lowest-lying vector mesons into η or η′, i.e., V → (η, η′)γ ,
and of the radiative decays η′ → V γ , with V = ρ,ω,φ.

We follow closely the method presented in Refs. [36,59],
and we make use of the equations in Appendix A in Ref. [36]
to relate the form factors with the mixing angle and the decay
constants in the flavor basis. To account for the φ–ω mix-
ing we use φV = 3.4◦. The form factors, saturated with
the lowest-lying resonance and then assuming VMD, can be
expressed by

FV Pγ (0, 0) = fV
mV

gV Pγ , (19)

where gV Pγ are the couplings we are interested in, and fV
are the leptonic decay constants of the vector mesons and are
determined from the experimental decay rates via

((V → e+e−) = 4π

3
α2 f 2

V

mV
c2
V , (20)

with cV an electric charge factor of the quarks that make
up the vector, cV = ( 1√

2
, sin θV√

6
, cos θV√

6
) for V = ρ,ω,φ,

respectively. Here θV = φV+arctan(1/
√

2). Experimentally
we find

fρ0 = (221.2 ± 0.9)MeV,

fω = (179.9 ± 3.1)MeV,

fφ = (239.0 ± 3.8)MeV.

(21)

using ((ρ → e+e−) = 7.04(6) keV, ((ω → e+e−) =
0.60(2) keV, and ((φ → e+e−) = 1.27(4) keV from [42].

The couplings in this flavor basis are

gρηγ = 3mρ

4π2 fρ0

cos φ√
2Fq

, gρη′γ = 3mρ

4π2 fρ0

sin φ√
2Fq

,

gωηγ = mω

4π2 fω

(

cos φV
cos φ√

2Fq
− 2 sin φV

sin φ√
2Fs

)

,

gωη′γ = mω

4π2 fω

(

cos φV
sin φ√

2Fq
+ 2 sin φV

cos φ√
2Fs

)

,

gφηγ = − mφ

4π2 fφ

(

sin φV
cos φ√

2Fq
+ 2 cos φV

sin φ√
2Fs

)

,

gφη′γ = − mφ

4π2 fφ

(

sin φV
sin φ√

2Fq
− 2 cos φV

cos φ√
2Fs

)

.

(22)

where we have assumed φq = φs = φ. Table 4 collects our
predictions in its second column. Corrections due to φq ̸= φs
to these formulas can be found in Appendix A, Eq. (A.5) of
Ref. [36].

The decay widths of P → V γ and V → Pγ are

((P → V γ ) = α

8
g2
V Pγ

(
m2

P − m2
V

mP

)3

,
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Table 4 Summary of VPγ couplings

Prediction Experiment

gρηγ 1.50 (4) 1.58 (5)

gρη′γ 1.18 (5) 1.32 (3)

gωηγ 0.57 (2) 0.45 (2)

gωη′γ 0.55 (2) 0.43 (2)

gφηγ −0.83 (11) −0.69 (1)

gφη′γ 0.98 (14) 0.72 (1)

RJ/& = '(J/&→η′γ )
'(J/&→ηγ ) 4.74 (55) 4.67 (20)

Experimental determinations are from Ref. [42]

'(V → Pγ ) = α

24
g2
V Pγ

(
m2

V − m2
P

mV

)3

. (23)

The experimental decay widths from [42] allow us to
extract an experimental value for gV Pγ , which are collected
in the last column on Table 4.

Our predictions compare well with the experimental deter-
minations, see Table 4, specially considering the simplicity
of the approach. The differences are always below 2 standard
deviations, excepting the ω couplings. Our prediction for the
ratio of J/& decays is in that respect remarkable.

The observed deviations hint toward a somehow oversim-
plified approach. Even though our goal is just to show the
relevance of TFF in other decays, and we do not pretend an
exhaustive study of higher-order contributions in our scheme,
we still want to remark two possible ways to improve our
approach.

On the one hand, the fact that Fq departs from Fπ in
Eq. (14) may imply a correction through an OZI-violating
parameter *1 that appears at next-to-leading order in the
Lagrangian of χPT Large-Nc used to define the mixing equa-
tions, Fq = Fπ (1 + *1/3) [52,60] which in turns imply
φq ̸= φs , since φq − φs ∼ *1/3. With the result in Eq. (14),
we estimate *1 ∼ 0.2, in agreement with the naive 1/Nc
counting (i.e., *1 ∼ 1/Nc ∼ 0.3), and then φq −φs ∼ 3.8◦.

The ratio RJ/& provides direct information on the angle
φq since

RJ/& = tan2(φq)

(
mη′

mη

)4
(
M2

J/& − m2
η′

M2
J/& − m2

η

)3

, (24)

with MJ/& the J/& meson mass. The experimental RJ/&

ratio defined in last the row in Table 4, results in φq =
(38.1 ± 0.6)◦, which implies φs = (38.1 + 3.8 ± 1.6)◦ =
(41.9 ± 1.6)◦ with the error coming from our determina-
tion of φ in Eq. (14). Even though both angles are distin-
guishable, their impact on the gV Pγ is a shift of the form
gV Pγ → gV Pγ /(cos φq cos φs + sin φq sin φs) [36]. For the
φq = φs limit, such a shift is exactly 1. Using the 3.8◦ differ-

ence, such a shift translates into 0.998, a 2 per mil effect—
negligible. Our assumption φq = φs = φ is supported phe-
nomenologically.

On the other hand, as discussed in detail in Ref. [61], in the
flavor singlet channel one has to allow for another OZI-rule
violating correction, which essentially corresponds to replac-
ing F0 → F0/(1+*3). This shifts both the P → γ γ decays
and the formulas for gV Pγ predictions [60]. The parame-
ter *3 is, however, still unknown, although expected to be
∼ 1/Nc ∼ 0.3. We can make use of Eq. (15) to estimate it.
The shift on F0 can be translated into a shift in Fq,s recall-
ing that both are related to Fπ following Eqs. (17) and (9),
respectively, and find Fq,s → Fq,s/(1 ±*3) as well. Going
then to Eq. (8), Fη(′)γ γ (0) → Fη(′)γ γ (0)(1 − *3).

Then Eq. (15) transforms into

lim
Q2→∞

Q2(Fηγ ∗γ (Q2)Fηγ γ (0)+ Fη′γ ∗γ (Q
2)Fη′γ γ (0))

×(1 − *3) =
(

1 + 8
9
δ

)
3

2π2 , (25)

which, after expanding and reorganizing in such a way that
in the l.h.s. remain only experimental quantities, results in

lim
Q2→∞

Q2(Fηγ ∗γ (Q2)Fηγ γ (0)+ Fη′γ ∗γ (Q
2)Fη′γ γ (0))

=
(

1 + 8
9
δ + *3 +

8
9
δ*3

)
3

2π2 . (26)

We recall that l.h.s., experimentally, reads 0.89 3
2π2 , and

δ = −0.17. With (26) we find *3 = 0.05, smaller than
expected and with positive sign.

The VPγ couplings are also shifted by *3. The expres-
sions can be found in Eq. (42) in Ref. [60] which, after
expanding, can be expressed as a shift on the couplings in
our Eq. (22): gVηγ → (gVηγ + |gVηγ |*3/2) and gVη′γ →
(gVη′γ + |gVη′γ |*3), always increasing the coupling. For
some of them, the *3 correction goes on the right direction
(the ρ case), but for others it is not conclusive (the φ case
where for η goes well and for η′ wrong). The result of the
shift is, then, ambiguous.

Discarding OZI-violating effects, Padé approximants can
then be the avenue to follow since the vector mass that should
be used in Eq. (19) it should not correspond to a physical
observable, but an effective scale provided by the pole of a
PA assuming the philosophy of the present work. For the η

TFF, the *2
η from Eq. (3) is smaller than the VMD medi-

ator. If the same would happen with the ρ,ω form factors,
one would expect, then, different gV Pγ couplings. Since this
study is beyond the scope of the present analysis, we post-
pone it for future work. A naive estimate of these effects
could be accounted for within the half-width-rule [46], i.e.,
instead of using mV in Eq. (19), we use mV ± 'V /2, with
' the full width of the vector. This provides a way to assess
the error of neglecting the width of the resonance in using
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The experimental decay widths from [42] allow us to
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Our predictions compare well with the experimental deter-
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of the approach. The differences are always below 2 standard
deviations, excepting the ω couplings. Our prediction for the
ratio of J/& decays is in that respect remarkable.

The observed deviations hint toward a somehow oversim-
plified approach. Even though our goal is just to show the
relevance of TFF in other decays, and we do not pretend an
exhaustive study of higher-order contributions in our scheme,
we still want to remark two possible ways to improve our
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On the one hand, the fact that Fq departs from Fπ in
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(38.1 ± 0.6)◦, which implies φs = (38.1 + 3.8 ± 1.6)◦ =
(41.9 ± 1.6)◦ with the error coming from our determina-
tion of φ in Eq. (14). Even though both angles are distin-
guishable, their impact on the gV Pγ is a shift of the form
gV Pγ → gV Pγ /(cos φq cos φs + sin φq sin φs) [36]. For the
φq = φs limit, such a shift is exactly 1. Using the 3.8◦ differ-

ence, such a shift translates into 0.998, a 2 per mil effect—
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nomenologically.

On the other hand, as discussed in detail in Ref. [61], in the
flavor singlet channel one has to allow for another OZI-rule
violating correction, which essentially corresponds to replac-
ing F0 → F0/(1+*3). This shifts both the P → γ γ decays
and the formulas for gV Pγ predictions [60]. The parame-
ter *3 is, however, still unknown, although expected to be
∼ 1/Nc ∼ 0.3. We can make use of Eq. (15) to estimate it.
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2π2 , and

δ = −0.17. With (26) we find *3 = 0.05, smaller than
expected and with positive sign.
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sions can be found in Eq. (42) in Ref. [60] which, after
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(the ρ case), but for others it is not conclusive (the φ case
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then be the avenue to follow since the vector mass that should
be used in Eq. (19) it should not correspond to a physical
observable, but an effective scale provided by the pole of a
PA assuming the philosophy of the present work. For the η
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ator. If the same would happen with the ρ,ω form factors,
one would expect, then, different gV Pγ couplings. Since this
study is beyond the scope of the present analysis, we post-
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We have analyzed the experimental data on the 
η and η’ TFF at low and intermediate energies with a 
model independent approach based on Padé approximants
(extending the analysis for the π0-TFF)

We have obtained accurate values of the corresponding 
slope and curvature parameters as well as the 
values of the TFFs at zero and infinity

We have quantified the impact of these results on the 
η and η’ mixing parameters and the VPγ couplings

P. Masjuan, PRD 86 (2012) 094021

More experimental data would be desirable
(BESIII, BELLE?, KLOE, WASA) to further improve this method

We have quantified the effect of including time-like data 
in the η TFF, thus enhancing the space-like based results

● Summary and Conclusions


