

LHCb:香精物理学

Sergey Barsuk, LAL Orsay on behalf of the LHCb collaboration

Selected LHCb results on

- □ LHCb as LHCb and LHCc, key detector elements and data sample
- **CP-parity violation**, involving or not CPV measurements
- Rare decays

very personal selection of results

Other new important LHCb results in the talk by Liming Zhang :
New results on exotic baryon resonances at LHCb

CKM matrix, CP-parity violation and unitarity triangle

The Cabibbo-Kobayashi-Maskawa

in Wolfenstein

matrix

parametrization

- □ Standard Model extremely successful for 40 years
- □ "New Physics" indications suppressed by scale and/or coupling
- $\hfill\square$ Search for NP via two complementary approaches

Energy path - direct production - brutal force

or

Quantum path - indirect search via loops - intelligent

In close collaboration with theorists who modify even a simple penguin to describe the measurements

Search for New Physics at LHCb

□ Look at LoopS: Search for contributions from effects not described by SM via loop-mediated transitions contributing to

Small asymmetries - CPV

Rare decays

beauty sectors

Production - mainly QCD tests
 Precision measurement of CKM parameters (e.g. via tree diagrams)

Flavour physics at LHCb

From φ to ψ , USTC-Hefei, 24.09.15

Constructing the unitarity triangle

- □ The UT can be constructed from non-CPV measurements
- □ The UT can be constructed from CPV measurements only
- $\hfill\square$ Both construct the same UT

All measurements are so far consistent with the same UT
 Single same CPV parameter for charm and beauty sector

Flavour physics at LHCb

From φ to ψ , USTC-Hefei, 24.09.15

How to quantify NP contribution

Flavour transitions probe high mass scales in quantum loops (e.g. FCNC)

Flavour physics at LHCb

How to quantify NP contribution

 \Box For NP in \triangle B=2 transitions :

$$C_{B_q} e^{2i\phi_{B_q}} = \frac{\langle B_q^0 | H_{\text{eff}}^{\text{full}} | \bar{B}_q^0 \rangle}{\langle B_q^0 | H_{\text{eff}}^{\text{SM}} | \bar{B}_q^0 \rangle} \,,$$

$$\begin{split} \Delta m_d^{\text{exp}} &= C_{B_d} \Delta m_d^{\text{SM}} \,,\\ \sin 2\beta^{\text{exp}} &= \sin(2\beta^{\text{SM}} + 2\phi_{B_d}) \,,\\ \alpha^{\text{exp}} &= \alpha^{\text{SM}} - \phi_{B_d} \,,\\ \Delta m_s^{\text{exp}} &= C_{B_s} \Delta m_s^{\text{SM}} \,,\\ \phi_s^{\text{exp}} &= (\beta_s^{\text{SM}} - \phi_{B_s}) \,, \end{split}$$

□ No sign of NP at the 10%-30% level ...

Flavour physics at LHCb

From φ to ψ , USTC-Hefei, 24.09.15

LHCb: key detector systems for precision flavour physics

VELO: Vertex LOcator

JINST 8 (2013) P08002, arXiv:1405.7808

- 88 semi-circular microstrip Si sensors
- Double-sided, R and φ layout, in each module
- \square 300 μ thick n-on-n sensors

 \Box Strip pitches from 40 to 120 μ

 First active strip at 8.2mm from the beam axis
 Moves away every fill and centers around the beam with self measured vertices

Flavour physics at LHCb

From φ to ψ , USTC-Hefei, 24.09.15

VELO: precise reconstruction of tracks and vertices

- Excellent spatial resolution, down to 4µ for single tracks
- □ Precise **impact parameter** measurement, $\sigma_{TP} = 11.6 + 23.4/pT [\mu]$
- □ Precise **primary vertex** reconstruction, $\sigma_x = \sigma_x = 13\mu$, $\sigma_z = 69\mu$ for a vertex of 25 tracks
- Detector understood, simulation describes data
 VELO provides excellent proper time resolution

Charged hadron identification: RICH detectors

2 Ring Imaging Cherenkov Detectors (RICH): 3 Radiators, photons from Cerenkov cone focused onto rings recorded by Hybrid Photon Detector (HPD) arrays, out of acceptance

Charged hadron ID with RICH : charmless two-body b-hadron decays

Trigger

Performant LHCb trigger: hardware LO, software HLT, and software deferred trigger implemented in 2012 to use the farm during the inter-fill periods

Flavour physics at LHCb

From ϕ to ψ , USTC-Hefei, 24.09.15

Selected LHCb results

 \Box Angle γ , new decay modes

 $\Box |V_{ub}/V_{cb}| \text{ from } \Lambda_b \rightarrow p\mu v / \Lambda_b \rightarrow \Lambda_c^{+}\mu v$

 \Box Weak phase ϕ_s via $B_s \rightarrow J/\psi K^+K^-$

□ Search for CPV in charm sector

 \Box Search for asymmetries in $D^0 \rightarrow hh$

□ Search for CPV in $D^0 \rightarrow \pi^+\pi^-\pi^0$ with Energy Test

 \Box Rare decays $B \rightarrow \mu\mu$, $b \rightarrow s \mu\mu$, charm rare decays

Flavour physics at LHCb

 Angle γ can be measured from tree diagrams alone (probably the only such CPV parameter) → a reference point for SM
 A final state common to D⁰ and D
⁰ is required

□ In B→Dh decays (and in D⁰D⁰ mixing) effects from NP are considered to be small
→ benchmark test of CKM consistency

Angle γ from B[±] \rightarrow DK[±], techniques to arrive at the same final state

1) Use a CP mode for the D⁰ GLW (Gronau, London, Wyler) CP+ and CP- modes $(K^{+}K^{-},\pi^{+}\pi^{-}) \leftarrow (K_{S}\pi^{0},\phi K_{S},\eta K_{S},\rho K_{S},\omega K_{S})$ Parameters: r_B , γ , δ_B , $(r_D = 1, \delta_D = 0)$ (Very) small Branching Ratios ADS (Atwood, Dunietz, Soni) $\begin{bmatrix} D^0 \to K^- \pi^+ \\ D^0 \to K^- \pi^+ \pi^0 \\ D^0 \to K^- \pi^+ \pi^- \pi^+ \end{bmatrix}$ 2) Use CAD (K⁻ π^+) for the V_{ub} decay and DCSD (K⁻ π^+) for the V_{cb} decay Parameters: r_{B} , γ , δ_{B} , r_{D} ~0.06, δ_{D} (Very) small Branching Ratios Strong phase between the D⁰ decays 3) Use Dalitz plot analysis of 3-body GGSZ (Giri, Grossman, Soffer, Zupan) D^{o} decay, e.g. $D^{o} \rightarrow K_{s}\pi\pi$ Dalitz plot description Flavour physics at LHCb From φ to ψ , USTC-Hefei, 24.09.15 SB

16

Angle γ from B \rightarrow DK

LHCb only combination, without latest results (but including measurements on DK*⁰ and time-dependent D[±]sK[±]):

 $\gamma = (79^{+9}_{-10})^{\circ}$, best single-experiment result (CKM2014 update)

New LHCb measurements with competitive sensitity

Flavour physics at LHCb

From φ to ψ , USTC-Hefei, 24.09.15

Angle γ , new decay modes

arXiv:1505.07044 3.0 fb⁻¹

- □ Highly significant signals in CP modes $B^- \rightarrow DK^-\pi^+\pi^-$, $D \rightarrow K^+\pi^-$, K^+K^- , $\pi^+\pi^-$
- New independent LHCb measurement:

 $\gamma = \left(74^{+20}_{-18}\right)^o$

□ First observation of the suppressed ADS mode $B^- \rightarrow (K^+\pi^-)_D K^-\pi^+\pi^-,$ very sensitive to y

 $\Box B^{-} \rightarrow DK^{-} \text{ with } D^{0} \text{ modes including } \pi^{0} : \qquad PRD 91 (2015) 112014 \\ D \rightarrow \pi^{+}\pi^{-}\pi^{0}, D \rightarrow K^{+}K^{-}\pi^{0} \text{ and } D \rightarrow K^{-}\pi^{+}\pi^{0} (ADS) \qquad 3.0 \text{ fb}^{-1}$

Recent analysis of coherently produced DD at ψ(3770): D→ π⁺π⁻π⁰ very close to a CP-even eigenstate (CP-even fraction F₊= 0.968±0.017)
 → γ analysis (so-called quasi-GLW)
 PLB 740 (2015) 1
 No evidence of CPV yet at LHCb, good consistency with other measurements

Flavour physics at LHCb

From ϕ to ψ , USTC-Hefei, 24.09.15

 $|V_{ub}/V_{cb}| \text{ from } \Lambda_b \rightarrow p\mu\nu \ / \ \Lambda_b \rightarrow \Lambda_c{}^{\scriptscriptstyle +}\mu\nu$

Long standing discrepancy between exclusive and inclusive measurements, now at 3.8σ level: inclusive
 |V_{ch}| = (42.4 ± 0.9)×10⁻³, |V_{ub}| = (4.41 ± 0.15)×10⁻³

$$|V_{cb}| = (39.5 \pm 0.8) \times 10^{-3}, |V_{ub}| = (3.23 \pm 0.31) \times 10^{-3}$$

□ NP RH coupling to explain the discrepancy

$$\mathcal{L}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{ub}^L \left(\bar{u} \gamma_\mu P_L b + \epsilon_R \bar{u} \gamma_\mu P_R b \right) \left(\bar{\nu} \gamma^\mu P_L l \right) + h.c.$$

F. Bernlochner et al. PRD 90 (2014) 094003

 \Box LHC provides rich sample of Λ_{b} :

 $Bd : Bs : \Lambda_b \sim 4 : 1 : 2$ in LHCb acceptance

 $\Box \text{ Directly compare } \Lambda_{\rm b} \rightarrow p\mu^{-}\bar{\nu} \text{ with } \Lambda_{\rm b} \rightarrow \Lambda_{\rm c}^{+} (pK^{-}\pi^{+}) \mu^{-}\bar{\nu}$

 $|V_{ub}/V_{cb}| \text{ from } \Lambda_b \rightarrow p\mu\nu \ / \ \Lambda_b \rightarrow \Lambda_c{}^{\scriptscriptstyle +}\mu\nu$

- □ Lattice QCD form factors, needed in the calculation Nature Phys. 11 (2015) 743 of $|V_{ub}|$, are most precise at high q²(µv), PRD 92 (2015) 3, 034503 use q²(µv) > 15 GeV²
- \Box q² determined using Λ_{b} flight direction and mass, up to a two-fold ambiguity
- \Box Vertex isolation is used, $\Lambda_c^+ \rightarrow pK^-\pi^+$ cross-feed is the main background $M_{corr} = \sqrt{M_{hu}^2 + p_{\perp}^2 + p_{\perp}}$ Use corrected mass: Λ_{b} p_{\perp} 18000 / (40 MeV/c²) 0007 $(50 \text{ MeV}/c^2)$ LHCb LHCb identified 15000 $\Lambda_c^+ \mu^- \overline{\nu}$ $\Lambda_c^{*+}\mu^-\overline{\nu}$ 12000 Combinatorial Candidates / 0000 Candidates / 9000 6000 3000 3000 5500 5000 4000 5000 40004500 Corrected $p\mu^{-}$ mass [MeV/ c^{2}] Corrected $pK^{-}\pi^{+}\mu^{-}$ mass [MeV/ c^{2}]

 $|V_{ub}/V_{cb}|$ from $\Lambda_b \rightarrow p\mu v / \Lambda_b \rightarrow \Lambda_c^{+}\mu v$

LHCb results do not support RH currents, agree with exclusive

Weak phase ϕ_s via $B_s \rightarrow J/\psi K^+K^-$

FIRST EVIDENCE OF NEW PHYSICS IN $b \leftrightarrow s$ TRANSITIONS arXiv:0803.0659v1 (**UT***fit* Collaboration)

M. Bona,¹ M. Ciuchini,² E. Franco,³ V. Lubicz,^{2,4} G. Martinelli,^{3,5} F. Parodi,⁶ M. Pierini,¹ P. Roudeau,⁷ C. Schiavi,⁶ L. Silvestrini,³ V. Sordini,⁷ A. Stocchi,⁷ and V. Vagnoni⁸

- SM

 $\Delta \Gamma = \Delta \Gamma_{\rm SM} \times |\cos(\phi_{\rm s})|$

0.5

-0.1

We combine all the available experimental information on B_s mixing, including the very recent tagged analyses of $B_s \to J/\Psi \phi$ by the CDF and DØ collaborations. We find that the phase of the B_s mixing amplitude deviates more than 3σ from the Standard Model prediction. While no single measurement has a 3σ significance yet, all the constraints show a remarkable agreement with the combined result. This is a first evidence of physics beyond the Standard Model. This result disfavours New Physics models with Minimal Flavour Violation with the same significance.

A slide from introduction to Moriond QCD 2008

Weak phase ϕ_s via $B_s \rightarrow J/\psi K^+K^-(\phi)$

Results consistent with SM

Measurements statistically limited

Flavour physics at LHCb

From φ to ψ , USTC-Hefei, 24.09.15

 ΔA_{CP} of $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$

□ CPV in charm, 1% effects would mean NP

□
$$A_{CP}(K^+K^-) = (-0.016 \pm 0.012)\%$$

□ $A_{CP}(\pi^+\pi^-) = (-0.05 \pm 0.15)\%$
□ $\Delta A_{CP} = (-0.253 \pm 0.104)\%$ [HFAG 2/2015]

Flavour physics at LHCb

- □ Can only trigger on cases where both K⁰_S decay in VELO ("LLtrig")
- Three other categories with 0 (DD), 1 (LD) or 2 (LL, but not triggered) K⁰_S in VELO
 - \rightarrow 600 decays, tagged by D* charge

 $A_{CP} = -(2.9 \pm 5.2 \pm 2.2)\%$

Compatible with CP symmetry

Flavour physics at LHCb

$D^0 \rightarrow h^+h^-$: A_{Γ} with semileptonic decays

$D^0 \rightarrow h^+h^-$: A_{Γ} with semileptonic decays

JHEP 1504 (2015) 043 3.0 fb⁻¹

$$A_{\Gamma}(K^{-}K^{+}) = (-0.134 \pm 0.077 \,{}^{+0.026}_{-0.034})\%$$
$$A_{\Gamma}(\pi^{-}\pi^{+}) = (-0.092 \pm 0.145 \,{}^{+0.025}_{-0.033})\%$$

Flavour physics at LHCb

From ϕ to ψ , USTC-Hefei, 24.09.15

CPV in $D^0 \rightarrow \pi^+\pi^-\pi^0$ with Energy Test

Energy test: Unbinned test of compatibility between D⁰ and D⁰ Dalitz distributions $m^2(\pi^-\pi^0)$ [GeV $^2/c^2$

- Based on distance in phase-space of events
- Sensitive to local asymmetries

Rare decays: search for $B_{d,s} \rightarrow \mu \mu$

✓ Very rare in SM, CKM and helicity suppressed
■ BR(B_s → µ+µ-)_{SM} = (3.66 ± 0.23)×10⁻⁹, BR(B_d → µ+µ-)_{SM} = (1.06 ± 0.09)×10⁻¹⁰

- Search for B_d and B_s: BRs could be modified differently by New Physics
- □ Exemplary sensitivity for SUSY: B(Bs $\rightarrow \mu+\mu-$) \approx (tan β)⁶/M_{A0}
- Improved by 6 orders of magnitude over 30 years ...

Flavour physics at LHCb

From ϕ to ψ , USTC-Hefei, 24.09.15

Angular analysis of $B_d \rightarrow K^{\star 0} \mu^{+} \mu^{-}$

- □ b → s $\mu^+\mu^-$, FCNC transition
- □ SM: EW penguin, box diagrams
- Possible contribution from new heavy particles (Z', extra H...)
- □ Angular observables in $K^{*0}(K^{+}\pi^{-})\mu^{+}\mu^{-}$ characterized by 6 amplitudes for K^{*0} helicities and $\mu^+\mu^-$ chiralities (L,R): $A_{0}^{L,R}$
- □ Full set of 8 observables analised as function of $q^2(\mu^+\mu^-)$

5

 $F_{\rm L}$

0.8

0.6

0.4

0.2

0

Angular analysis of $B_d \rightarrow K^{\star 0} \; \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$

 LHCb with 2011 dataset: local deviation from SM, >3σ significance for P'5 observable
 PRL 111 (2013) 191801

 \square P' $_5\,$ is related to the L/R asymmetry of the interference between A_0 and A_L

$$P_{5}' = \sqrt{2}Re\left(A_{0}^{L}A_{\perp}^{L*} - A_{0}^{R}A_{\perp}^{R*}\right) / \sqrt{F_{L}(1 - F_{L})} = S_{5} / \sqrt{F_{L}(1 - F_{L})}$$
$$F_{L} = |A_{0}^{L}|^{2} + |A_{0}^{R}|^{2}$$

 \Box Sensitive to NP in VV or VA (Wilson coefficient C_9)

S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, arXiv:1407.8526

□ Many interpretations of this discrepancy: over 13 papers in 2014.

Angular analysis of $B_s \rightarrow \phi \mu^+\mu^-$

- \Box B_s $\rightarrow \Phi(K^+K^-) \mu^+\mu^-$ is not self-tagging
- \Box Good complementarity (yield $\approx 1/6$)
- □ Full angular analysis as function of $q^2(\mu^+\mu^-)$, all 8 observables determined for the first time
 - □ the observables are different from K* µµ (new CPV asymmetries, no S_5 or A_{FB})
- □ All angular observables consistent with the SM, but a local 3.30 tension in the BR
 - □ a similar trend is also seen for the BRs of other b \rightarrow s $\mu^{+} \mu^{-}$ decays at LHCb:
 - **B**_d → **K(*)** µ⁺ µ⁻, JHEPO6 (2014) 133

 $B^+ \rightarrow K^+ \pi^+ \pi^- \mu^+ \mu^-$, JHEP 10 (2014) 064

Rare charm decays

 Decays are suppressed in the SM (10⁻⁹-10⁻¹⁰), potential NP enhancement by an order of magnitude.
 E.g. beauty penguin wins due to t-quark contribution

				-
Modes	Run I	Run II	Upgrade	
$D^0 \rightarrow \mu^+ \mu^-$	few 10 -9	fewer 10-9	few 10 -10	
$D^+ \rightarrow \pi^+ \mu^+ \mu^-$	few 10 -8	fewer 10 -8	few 10 -9	
$D_{s}^{+} \rightarrow K^{+}\mu^{+}\mu^{-}$	few 10 -7	fewer 10 -7	few 10 -8	
D⁰ → h⁺h' ⁽⁻⁾ μ⁺μ⁻	few 10 -7	fewer 10 -7	few 10 -8	
Λ _c → ρμμ	few 10 -7	fewer 10 -7	few 10 -8	
D ^o →µe	few 10 -8	fewer 10 -8	few 10 -9	ſ

- Based on current result, scaling for luminosity and cross section
- Current studies. With more statistics, also NP-sensitive asymmetries

These modes will benefit from a full-software trigger after LS2, with a gain >3 in efficiency (not included in prospects above)

□ Theoretical framework to combine rare charm measurements needed

Status and outlook

LHCb Integrated Luminosity at p-p 6.5 TeV in 2015

 \Box LHCb, Run II until 2018: $\int s = 13$ TeV, ntegrated Luminosity (1/pb) 60 Delivered Lumi: 43.56 /pb goal is $L \sim 4 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$, bunch Recorded Lumi: 36.60 /pb 50 crossing spacing of 25 ns, μ = 1.4 LHC is progressing to deliver nominal L 30 20 LHCb Preliminary $\sqrt{s} = 13 \text{ TeV}$ 10 LHCb D^+ 30/07 13/08 27/08 10/09 04/06 18/06 02/07 16/07 Date bb cross-section with 4π extrapolation* arXiv:1509.00771 LHCb D^0 ++- $\sigma = 515 \pm 2(\text{stat}) \pm 53(\text{syst}) \,\mu\text{b}$ LHCb average cc production cross-section LHCb-PAPER-2015-041 $\sigma(c\overline{c}) = 2850 \pm 3(\text{stat}) \pm 180(\text{syst}) \pm 140(\text{frag}) \,\mu\text{b}$ FONLL Collect and exploit data ! POWHEG+NNPDF3.0L (scaled) Upgraded LHCb, Run III from 2019-2020 on: $\int s = 14 \text{ TeV}, L \sim 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ (newcoming detectors POWHEG+NNPDF3.0L (absolute) designed to operate at L ~ 2 x 10³³ cm⁻² s⁻¹), bunch 10002000 3000 4000 0 crossing spacing of 25 ns, μ = 2, improved trigger efficiency, [Ldt ~ 5 fb⁻¹ /year $\sigma(c\overline{c})$ [µb]

Conclusions

 \Box Do we start seeing signs of effects beyond SM ?

Backup

Flavour physics at LHCb

From ϕ to $\psi,$ USTC-Hefei, 24.09.15

RICH detectors : charged particles identification performance

Reconstructed Cherenkov angle for isolated tracks, as a function of track momentum in the C₄F₁₀ radiator

Eur. Phys. J. C73 (2013) 2431

 Genuine π/K/p samples identified from kinematics only used to evaluate particle identification (PID) performance from data

□ Efficiency/rejection: reasonable agreement between data and simulation

Flavour physics at LHCb

41

Trigger

Flavour physics at LHCb

From ϕ to ψ , USTC-Hefei, 24.09.15

 $|V_{ub}/V_{cb}|$ from $\Lambda_b \rightarrow p\mu v / \Lambda_b \rightarrow \Lambda_c^+ \mu v$

- □ Lattice QCD form factors, needed in the calculation of |V_{ub}|, are most precise at high q² (µv)
- \Box q² determined using Λ_b flight direction and mass, up to a two-fold ambiguity
- □ Vertex isolation is used, $\Lambda_c^+ \rightarrow pK^-\pi^+$ cross-feed is the main background

□ In SM ratios

PRL 113 (2014) 151601

$$R_{\rm K} = \frac{\int d\Gamma[B^+ \to K^+ \mu^+ \mu^-]/dq^2 \cdot dq^2}{\int d\Gamma[B^+ \to K^+ e^+ e^-]/dq^2 \cdot dq^2} \quad \text{and} \quad R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu_{\tau})}{\mathcal{B}(B \to D^{(*)} \ell \nu_{\ell})}$$

are different from unity only due phase space difference

 \Box LHCb, Run I :

$$R_{\rm K} = 0.745 \, {}^{+0.090}_{-0.074} \, {}^{+0.036}_{-0.036}$$

for 1 < q^2 < 6 GeV², consistent with the SM at 2.6 σ

 $B \rightarrow D(*) \tau v$

Δ Lepton universality can be broken by new physics with τ lepton arXiv:1504.06339

- □ Ratios like $R(D^*)=BR(B \rightarrow D(^*)\tau v)/BR(B \rightarrow D(^*)\mu v)$ are sensitive to it
- □ In two Higgs doblet models (2HDM), the D/D* helicity amplitudes Hs: $H_s^{2HDM} \approx H_s^{SM} \left(1 + (S_R \pm S_L) \frac{q^2}{m_\tau (m_b \mp m_c)}\right)$
- BaBar and Belle reported Belle 2007 anomalous high values of R(D*) BABAR 2008 and R(D): Belle 2009 Belle 2010 PRD 88 (2013) 072012, PRL 109 101802 BABAR 2012 0.8 0.6 0.5 0.2 0.4 0.3 0.4 0.6 $\mathcal{R}(D^*)$ $\mathcal{R}(D)$
- □ Those exclude 2HDM where $S_L = 0$ (type II, minimal SUSY) in the full tan β -m_{H±} plane, but are compatible with general 2HDM having $|S_R + S_L| < 1.4$
- □ LHCb : First b → T reco at a hadron collider, $\overline{B}^0 \to D^{*+} T^- \overline{v}_{\tau}$ and $B^0 \to D^{*+} \mu^- \overline{v}_{\mu}$ identical final state topologies with $D^{*+} \to D^0 (\to K^- \pi^+) \pi^+$ and $T^- \to \mu^- \overline{v}_{\mu} v_{\tau}$

 $R(D^*) = 0.336 \pm 0.027 \pm 0.030$

□ LHCb result confirms the excess to the SM value 0.252±0.003 PRD 85 (2012) 094025 $B \rightarrow D(*) \tau v$

 \Box Combination is **3.9** σ from the SM expectation:

 $R(D) = 0.297 \pm 0.017$ $R(D^*) = 0.252 \pm 0.003$ PRD 78 014003 (2008), PRD 85 094025 (2012)

Flavour physics at LHCb

From φ to ψ , USTC-Hefei, 24.09.15

 $D^0 \rightarrow h^+h^-$: A_{Γ} with semileptonic decays

JHEP 1504 (2015) 043 3.0 fb⁻¹

□ Lifetime obtained from $D^0\mu$ and $D^0 \rightarrow h^+h^$ vertices

- Mistag asymmetry is the largest systematic uncertainty
- Mistag larger for larger lifetimes.

Checked with $D^0 \rightarrow K^- \pi^+$

CPV in $D^0 \rightarrow \pi^+\pi^-\pi^0$ with Energy Test

PLB 740 (2015) 158

□ Model-independent search for local CP asymmetry in tagged $D^0 \rightarrow \pi^+\pi^-\pi^0$ decays

Test statistic to compare average distances in phase space

$$T = \sum_{i,j>i}^{n} \frac{\psi_{ij}}{n(n-1)} + \sum_{i,j>i}^{\overline{n}} \frac{\psi_{ij}}{\overline{n}(\overline{n}-1)} - \sum_{i,j}^{n,\overline{n}} \frac{\psi_{ij}}{n\overline{n}}$$
 weighted average distance of events in one flavour sample to events of the opposite flavour sample

- □ Metric functions correspond to events i, j belonging to two samples of opposite flavour.
- □ Normalisation factors in the denominator remove impact of global asymmetries.
- If the distributions of events in both flavour samples are identical, T fluctuates around a value close to zero.
- \Box Choose Gaussian metric $\psi_{ij} \equiv \psi(d_{ij}) = e^{-d_{ij}^2/2\sigma^2}$, that decreases with a distance to improve sensitivity to local asymmetries
- \Box Remove dependence on the choice of Dalitz plot axes by choosing d_{ij} as

$$\Delta \vec{x}_{ij} = (m_{12}^{2,j} - m_{12}^{2,i}, m_{23}^{2,j} - m_{23}^{2,i}, m_{13}^{2,j} - m_{13}^{2,i})$$

- □ Larger CP asymmetries lead to larger T values → determine p-value under hypothesis of CP symmetry by comparing nominal T value from data to a distribution of T values from permutation samples, where the flavour of each candidate is randomly reassigned to simulate samples without CPV
- p-value for the no CPV hypothesis is obtained as the fraction of permutation T values greater than the nominal T value

Flavour physics at LHCb

From φ to ψ , USTC-Hefei, 24.09.15

Permutation T values fitted with a GEV function

Visualisation of regions of significant asymmetry is obtained by assigning asymmetry significance to each event. Contributions to the total T value of a single event:

$$\Box \text{ one flavour}: \qquad T_i = \frac{1}{2n(n-1)} \sum_{j \neq i}^n \psi_{ij} - \frac{1}{2n\overline{n}} \sum_{j}^{\overline{n}} \psi_{ij}.$$

$$\Box \text{ opposite favour : } \overline{T}_i = \frac{1}{2\overline{n}(\overline{n}-1)} \sum_{j \neq i}^{\overline{n}} \psi_{ij} - \frac{1}{2n\overline{n}} \sum_{j}^{n} \psi_{ij}.$$

- □ Permutation method to define the level of significance, distributions of the smallest negative (T^{min}_i) and largest positive (T^{max}_i) T_i values of each permutation.
- □ Positive (negative) local asymmetry significances : T_i values greater (smaller) than the fraction of the T^{max}_i (T^{min}_i) distribution that corresponds to the significance level.
- \Box Same procedure for anti-T_i distribution, Dalitz plot with an inverted asymmetry pattern.

- □ Amplitude difference between CP-conjugate states of a resonance
 → region of significant asymmetry as a band around the mass of the resonance
- □ Phase difference → regions of positive and negative asymmetry around the resonance

 \square Sensitivities to various CPV scenarios. $\triangle A$ and $\triangle \ \phi$: change in amplitude and phase of the resonance R

$R (\Delta A, \Delta \phi)$	p-value (fit)	Upper limit
$ ho^0 (4\%, 0^\circ)$	$3.3^{+1.1}_{-3.3} imes 10^{-4}$	$4.6 imes10^{-4}$
$ ho^0~(0\%,3^\circ)$	$1.5^{+1.7}_{-1.4} \times 10^{-3}$	$3.8 imes 10^{-3}$
ρ^+ (2%, 0°)	$5.0^{+8.8}_{-3.8} \times 10^{-6}$	$1.8 imes 10^{-5}$
ρ^+ (0%, 1°)	$6.3^{+5.5}_{-3.3} \times 10^{-4}$	$1.4 imes 10^{-3}$
ρ^{-} (2%, 0°)	$2.0^{+1.3}_{-0.9} \times 10^{-3}$	$3.9 imes10^{-3}$
ρ^{-} (0%, 1.5°)	$8.9^{+22}_{-6.7} \times 10^{-7}$	$4.2 imes 10^{-6}$

Permutation T value distribution showing the fit function and the measured T value as a red line

Visualisation of local asymmetry significances. Positive (negative) asymmetry significance : D^o candidates having positive (negative) contribution to the measured T value

Results for various metric parameter values. The p-values are obtained with the counting method

$\sigma [{\rm GeV^2}/c^4]$	<i>p</i> -value
0.2	$(4.6 \pm 0.6) \times 10^{-2}$
0.3	$(2.6 \pm 0.5) \times 10^{-2}$
0.4	$(1.7 \pm 0.4) \times 10^{-2}$
0.5	$(2.1 \pm 0.5) \times 10^{-2}$

