Weekly report

Xiaohu Sun 29-12-2014 IHEP

AZh analysis - introduction

- $A \rightarrow Zh$ is the dominant decay mode just below the tt threshold
- A \rightarrow Zh channel is nicely complementary to other Higgs searches and the BSM coupling analysis at the LHC

AZh analysis – limits

 combined limits of xsec times BR(h->tautau) or BR(h->bb) directly measured from the experiments, without any assumption of the branching ratios

AZh analysis – limits

 combined limits of xsec, with the assumption of the branching ratios in SM on BR(h->tautau) and BR(h->bb)

2HDM framework

- Predicted Higgs bosons:
 - *h*, *H* : *CP*-even neutral
 - A : CP-odd neutral
 - *H*[±] : Charged

- Parameters:
 - *m*(*h*), *m*(*H*), *m*(*A*), *m*(*H*[±]): masses
 - *α* : mixing angle of *h* and *H*
 - *tanβ* : ratio of vev's

	Type I	Type II	Type III	Type IV
ξ_{h}^{V}	sin(eta - lpha)	$\sin(eta-lpha)$	sin(eta - lpha)	sin(eta - lpha)
$\xi_{\mathbf{h}}^{u}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$
$\xi_{\mathbf{h}}^{d}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$
$\xi'_{\rm h}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$
ξ_{H}^{V}	$\cos(\beta - \alpha)$	$\cos(\beta - \alpha)$	$\cos(\beta - \alpha)$	$\cos(\beta - \alpha)$
$\xi^{u}_{\mathbf{H}}$	$rac{\sinlpha}{\sineta}$	$rac{\sinlpha}{\sineta}$	$rac{\sinlpha}{\sineta}$	$rac{\sin lpha}{\beta}$
$\xi^d_{\mathbf{H}}$	$\frac{\sin \alpha}{\beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\beta}$	$\frac{\cos \alpha}{\cos \beta}$
$\xi'_{\sf H}$	$rac{\sinlpha}{eta}$ sin eta	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$rac{\sin lpha}{\cos eta}$
$\xi^{u}_{\mathbf{A}}$	$\cot eta$	$\cot eta$	\coteta	$\cot \beta$
$\xi^d_{\mathbf{A}}$	$-\coteta$	tan eta	$-\coteta$	tan eta
$\xi'_{\mathbf{A}}$	$-\coteta$	tan eta	tan eta	$-\coteta$

2HDM framework

$$V_{yukawa} = -\sum_{i=1,2} \left(Q \tilde{\Phi}_i y_i^u \bar{u} + Q \Phi_i y_i^d \bar{d} + L \Phi_i y_i^e \bar{e} + \text{h.c.} \right)$$

- Type 1, in which $y_1^{u,d,e} = 0$; all fermions couple to one doublet.
- Type 2, in which $y_1^u = y_2^d = y_2^e = 0$; the up-type quarks couple to one doublet and the down-type quarks and leptons couple to the other.
- Type 3, in which y₁^u = y₁^d = y₂^e = 0; quarks couple to one doublet and leptons to the other. lepton specific
- Type 4, in which $y_1^u = y_1^e = y_2^d = 0$; up-type quarks and leptons couple to one doublet and down-type quarks couple to the other. flipped

 Well considered the effects from BR(h->tautau/bb), width, bbA production

 Well considered the effects from BR(h->tautau/bb), width, bbA production

¢^+

(c) Lepton-specific 2HDM, $m_A = 300 \text{ GeV}$

 Well considered the effects from BR(h->tautau/bb), width, bbA production

(a) Type-I 2HDM, $\cos(\beta - \alpha) = 0.1$

 Well considered the effects from BR(h->tautau/bb), width, bbA production

AZh analysis - where are we

- Before Xmas, we finally submitted the paper draft to ATLAS 2nd circulation with all the wanted plots in 2HDM interpretations
- What will be
 - must do: update the bbA effects by introducing the efficiencies extracted from real MC samples (currently we only use A->tautau samples to do the approximation, the MC samples are requested but they did not run as fast as they promised...)
 - might have to do: revisit some parts of interpretations if questions come to them
 - or, everything goes well, then we will have the paper submitted to journal in January