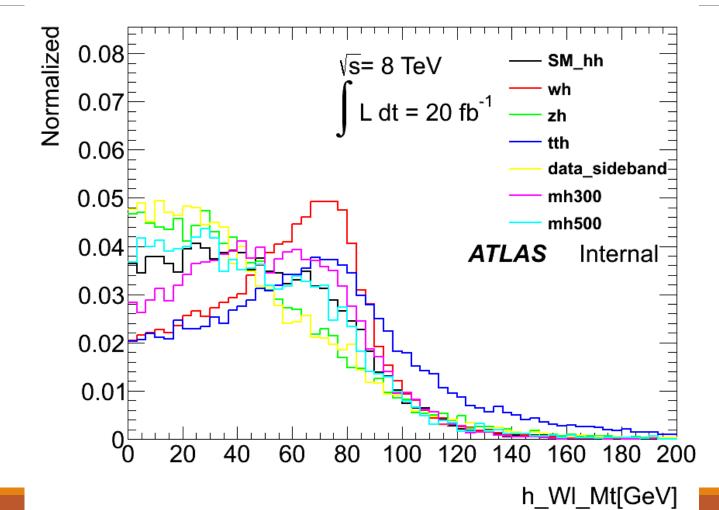
Weekly Meeting

HUIJUN

Cut flow for electrons

	SM Resonant								
	Higgs pair	260 GeV	300 GeV	350 GeV	400 GeV	500 GeV	800 GeV	1000 GeV	
Total	100%	100%	100%	100%	100%	100%	100 %	100 %	
Author	83.68%	85.65%	84.80%	84.75%	83.15%	84.48%	82.88%	82.32%	
Electron η	83.51%	85.36%	84.55%	84.43%	82.95%	84.27%	82.76%	82.22%	
Electron p_T	67.98%	65.15%	65.61%	66.79%	67.15%	69.81%	71.26%	71.47%	
Electron ID	55.62%	55.79%	56.17%	56.34%	55.61%	56.84%	51.08%	45.29%	
Electron isolation	43.87%	50.63%	50.23%	47.95%	46.34%	43.55%	28.27%	21.37%	
Electron revmoval	43.75%	50.49%	49.96%	47.82%	46.24%	43.53%	28.27%	21.34%	

Table 4: Efficiencies for electron selections at object level.


Cut flow on muon

	SM			Resonant				
	Higgs pair	260 GeV	300 GeV	350 GeV	400 GeV	500 GeV	800 GeV	1000 GeV
Total	100%	100%	100%	100%	100%	100%	100%	100%
Author	95.56%	96.82%	96.43%	96.18%	95.80%	95.52%	93.98%	92.94%
Muon p_T - η	85.82%	85.39%	85.93%	85.36%	86.41%	86.81%	87.87%	87.00%
Muon ID	84.94%	84.42%	84.88%	84.27%	85.58%	85.90%	86.96%	85.95%
Muon isolation	61.55%	67.00%	67.48%	64.82%	65.78%	58.58%	42.41%	30.36%
Muon revmoval	57.64%	66.19%	65.97%	62.21%	62.84%	54.53%	35.63%	24.72%

Table 5: Efficiencies for muon selections at object level.

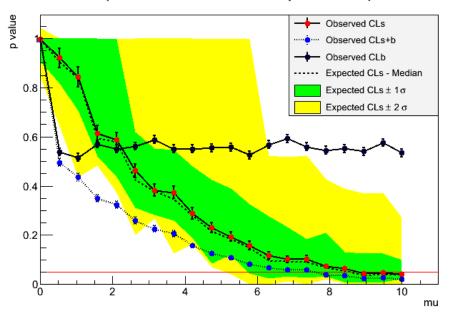
MT of Iv

Remaining questions from EB

- 5 questions left after last EB meeting
- 1. Use the anti-phi of sumEt of all the hard object as the direction of MET
- 2. Resolve the z part of MET to reconstruct H mass
- 3. Using fit instead of number counting to get the result
- 4. Madgraph multijet overlap removal between different background components
- 5. Change the algorism in tables of object selection

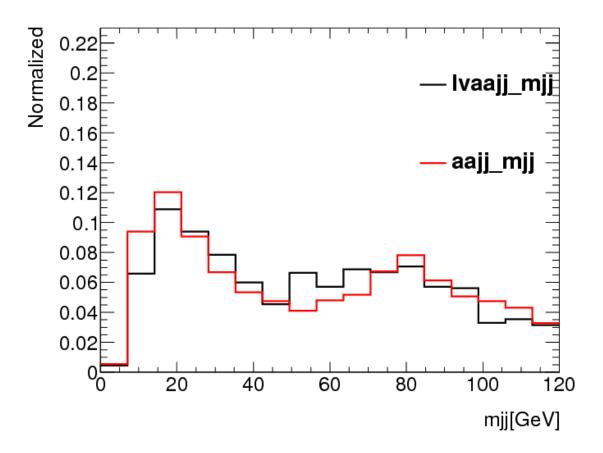
Comparison between toy and asymptotic

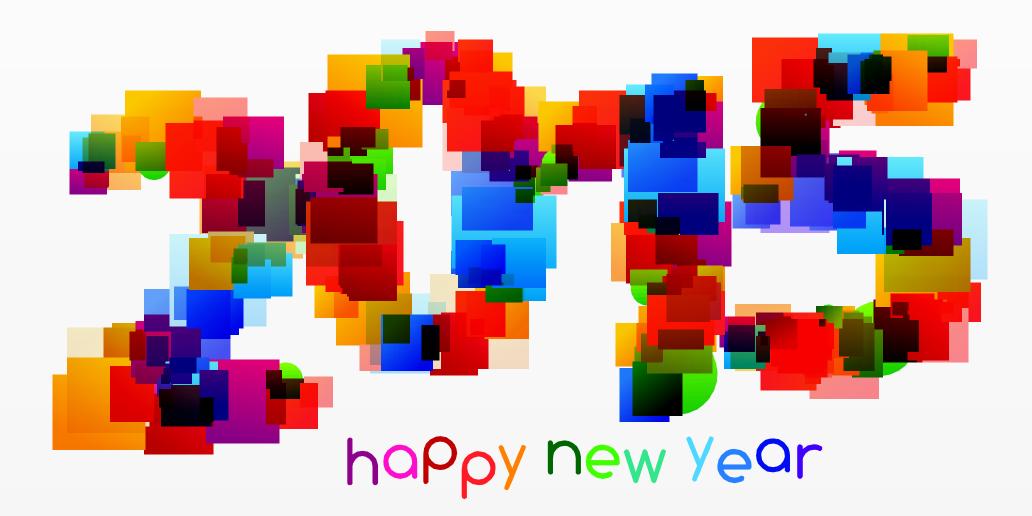
300_toy expected limit (+2 sig) 14.3005 expected limit (+1 sig) 10.3368 expected limit (median) 7.84938 expected limit (-1 sig) 6.31249 expected limit (-2 sig) 5.78947


300_as +2sigma: 18.1965 +1sigma: 12.0146 -1sigma: 5.79612 -2sigma: 4.3174 Injected: 9.14863 Median: 8.04396 Observed: 8.06476 800_toy expected limit (+2 sig) 10.2869 expected limit (+1 sig) 8.43876 expected limit (median) 6.12493 expected limit (-1 sig) 4.20474 expected limit (-2 sig) 3.68421

800_as +2sigma: 13.1369 +1sigma: 8.60869 -1sigma: 4.13297 -2sigma: 3.07856 Injected: 6.92603 Median: 5.73581 Observed: 5.74425

Fit result


Using bkg only instead of bkg+signal assumption


The result is still worse than number counting

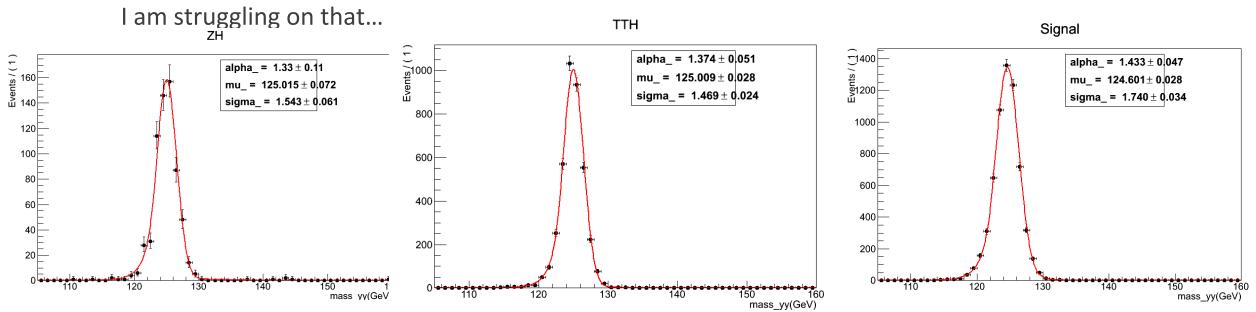
Frequentist CL Scan for workspace workspace

Dijet mass

Backup

Answering the questions from EB

4 questions left:

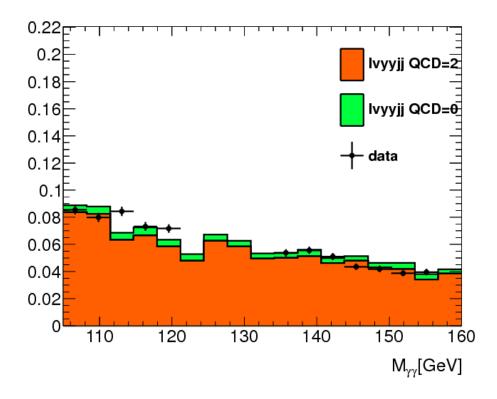

- **1.** Use the anti-phi of sumEt of all the hard object as the direction of MET
- 2. Resolve the z part of MET to reconstruct H mass
- 3. Using fit instead of number counting to get the result
- 4. The overlap between different background components

Fit

The result of fit result is quite dependent on parameters

We have to fix each para to reduce freedom

We cannot use 1 pdf to describe signal wh zh tth..


WH Events / (1) alpha_ = 1.595 ± 0.069 mu_ = 124.918 ± 0.035 sigma_ = 1.553 ± 0.028 400 300 200 100 0 130 120 mass_yy(GeV)

Background components

Here we just consider p p > lvyyjj with different

QCD vertex number to avoid the overlap caused

By parton shower

