The 2HDM-I heavier CP-even Higgs production

- $\sqrt{s} = 14$ TeV.
- Alinement limit: $\cos(\beta \alpha) = 0.4$.

The 2HDM-I heavier CP-even Higgs Br

 $\tan\beta = 1$

 $\tan\beta = 10$

The 2HDM-I $pp \rightarrow H \rightarrow hh \rightarrow 4W$ channel

$$\sigma[pp \to HX] \times Br [H \to hh] \times (Br [h \to W^+ W^-])^2 :$$

We take Xsection = 50 fb for $M_H = 300$ GeV.

The 2HDM-I $pp \to H \to hh \to 4W$ channel

- Br [$W \rightarrow \ell \nu$] $\simeq 10.8\%$ ($\ell : e \text{ or } \mu \text{ or } \tau$);
- $Br [W \rightarrow hadrons] \simeq 67.6\%$.
- \bullet Signal cross section with W decay:

• 1 hadronnic decay:

 $67.6\% \times (3 \times 10.8\%)^3 \times 4 \times \text{Xsection} \simeq 0.092 \times \text{Xsection};$

 \circ all leptonic decay:

 $(3 \times 10.8\%)^4 \times \text{Xsection} \simeq 0.011 \times \text{Xsection}.$

1 hadronnic decay channel

• Fast-simulation project:

MG5 + pythia + delphes 3.0.10.

- 2HDM Signal: $M_H = 300$ GeV.
- SM irreducible background:

 $p p \rightarrow \ell \nu W W W \rightarrow q q \ell \nu \ell \nu \ell \nu \sim 0.03837 [fb].$

• SM reducible background:

 $\circ p p \rightarrow \ell \nu \ell \nu \ell \nu \sim 3.811 [fb].$ $\circ p p \rightarrow \ell \nu \ell \ell W \rightarrow \ell \nu \ell \ell q q \sim 2.197 [fb].$ $\circ p p \rightarrow \ell \nu \ell \ell \sim 468.2 [fb].$

Signal generated by MG5

 \bullet Generating q~q on shell ($\ell~\nu$ off shell) and q~q off shell ($\ell~\nu$ on shell) separately

• Overlab remove:

• Electrons with $\Delta R(e, \gamma) < 0.4$ are removed;

 \circ Jets (BTag,TauTag = 0) with $\Delta R({\rm jet},e) < 0.2$ or $\Delta R({\rm jet},\gamma) < 0.4$ are removed;

 \circ Muons with $\Delta R(\mu, {\rm jet}) < 0.4$ or $\Delta R(\mu, \gamma) < 0.4$ are removed.

• Final state($q \ q \ \ell \ \nu \ \ell \ \nu \ \ell \ \nu$) selection:

 \circ Number of qjet \geq 2, choosing leading and subleading qjet pair;

 \circ Number of electron + Number of muon = 3.

• Basic cuts: $|\eta_{q,\ell}| < 2.5$, $P_{T_q} > 25$ GeV, $P_{T_{\ell}} > 15$ GeV.

Distribution of qjet $(M_H = 300 \text{GeV})$

• Cut based: $m_{qq} < 85$ GeV.

Distribution of qjet $(M_H = 300 \text{GeV})$

Missing ET distribution $(M_H = 300 \text{GeV})$

Distribution of leptons $(M_H = 300 \text{GeV})$

• Cut based: $P_{T_{\ell}} < 40$ GeV to be used.

Transverse mass distribution $(M_H = 300 \text{GeV})$

• Cut based: $M_{T_{qq\ell\nu\ell\nu\ell\nu}} < 280$ GeV.

Cut efficiency(1 hadronnic decay, $M_H = 300 \text{GeV}$)

Cuts	$\sigma_{ m total}$	Events selection	m_{qq}	$P_{T_{\ell}}, M_{T_{qq\ell\nu\ell\nu\ell\nu\ell\nu}}$
Signal [fb]	4.6	0.22	0.097	0.037
$\ell\ell\ell\nu$ [fb]	468.2	47.56	5.46	0.78
$qq\ell\nu\ell\nu\ell\nu[{\rm fb}]$	0.03837	0.0048	0.00087	0.00006
$\ell \nu \ell \nu \ell \nu [\text{fb}]$	3.811	0.301	0.072	0.0012
$qq\ell\ell\ell\nu$ [fb]	2.197	0.30	0.065	0.0037
S/B	0.0097	0.0046	0.017	0.047
$S/\sqrt{B}^{[1]}$	6.68	1.02	1.29	1.31
$S/\sqrt{B}^{[2]}$	14.94	2.28	2.89	2.94
$Signif-P^{[1]}$	6.67	1.02	1.29	1.30
$Signif-P^{[2]}$	14.91	2.28	2.88	2.92

Signif-P: $\sqrt{2 \times \{(S+B) \times \ln[(S+B)/B] - S\}}$. Integrate luminosity is assumed to be $\int \mathcal{L} dt = [1] 1000 \ ([2] 5000) \ \text{fb}^{-1}$.

all leptonic decay channel

• Fast-simulation project:

MG5 + pythia + delphes 3.0.10.

- 2HDM Signal: $M_H = 300$ GeV.
- SM reducible background:

$$\circ p p \rightarrow \ell \ell \ell \nu \ell \nu \sim 0.808 \text{[fb]}$$
$$\circ p p \rightarrow \ell \ell \ell \ell \ell \sim 62.48 \text{[fb]}.$$

• Overlab remove:

• Electrons with $\Delta R(e, \gamma) < 0.4$ are removed;

 \circ Jets (BTag,TauTag = 0) with $\Delta R({\rm jet},e) < 0.2$ or $\Delta R({\rm jet},\gamma) < 0.4$ are removed;

 \circ Muons with $\Delta R(\mu, {\rm jet}) < 0.4$ or $\Delta R(\mu, \gamma) < 0.4$ are removed.

• Final state($\ell \ \nu \ \ell \ \nu \ \ell \ \nu \ \ell \ \nu$) selection:

 \circ Number of electron + Number of muon = 4.

• Basic cuts: $|\eta_{\ell}| < 2.5, P_{T_{\ell}} > 15$ GeV.

Missing ET distribution $(M_H = 300 \text{GeV})$

• Cut based: MET > 20 GeV.

Distribution of leptons $(M_H = 300 \text{GeV})$

• Cut based: $P_{T_{\ell}} < 40$ GeV to be used.

Transverse mass distribution $(M_H = 300 \text{GeV})$

• Cut based: 70 GeV $< M_{T_{\ell\nu\ell\nu\ell\nu\ell\nu\ell\nu}} < 270$ GeV.

Cuts	$\sigma_{ m total}$	Events selection	MET, $P_{T_{\ell}}$	$M_{T_{\ell \nu \ell \nu \ell \nu \ell \nu}}$
Signal [fb]	0.55	0.022	0.0048	0.0043
$\ell\ell\ell\ell\ell[{\rm fb}]$	62.48	8.147	0.0075	0.0043
$\ell\ell\ell\nu\ell\nu[{\rm fb}]$	0.808	0.091	0.0015	0.0013
S/B	0.0087	0.0027	0.54	0.76
$S/\sqrt{B}^{[1]}$	2.19	0.24	1.61	1.81
$S/\sqrt{B}^{[2]}$	4.89	0.55	3.60	4.04
$Signif-P^{[1]}$	2.18	0.24	1.49	1.63
$Signif-P^{[2]}$	4.88	0.55	3.34	3.64

Signif-P:
$$\sqrt{2} \times \left\{ (S+B) \times \ln[(S+B)/B] - S \right\}$$
. Integrate luminosity is assumed to be $\int \mathcal{L} dt = {}^{[1]} 1000 \ ({}^{[2]} 5000) \ \text{fb}^{-1}$.