# HH pair searches status report

combination with wwyy, bbyy, bbττ, bbbb

Xiaohu SUN on behalf of all HH analyzers

CDS entry 29-06-2015 [wwyy]https://cds.cern.ch/record/1967498 IHEP [bbττ]https://cds.cern.ch/record/1967500 [combination]https://cds.cern.ch/record/1984111/ [paper draft]https://cds.cern.ch/record/2008753/

#### **Current status - limits**

 In low mass: now understood p0, limits and mu\_hat, but PRL curves drop below certain mu value less than 0 (from bbyy). One might need to inject data toys



 In high mass: non-parabolic PRL due to bbbb, David is rebinning (2->1) in high mass to avoid bins with signal but no backgrouns

#### Current status – low-tb-high

- Iow-tb-high interpretation:
  - use full resolution in map file: 5 GeV vs 0.1
  - before, we use mA 10 GeV with smooth, did not notice the fine structures in obs

compare no smoothing and smoothing



# Excl. maps

- Exclusion map before making contours
- Bins are filled with theo/limit, so once the bin content >1, this bin is excluded
- plots only show bins with theo/limit >1





# Excl. map (expected, mH)





# Excl. map (observed, mH)



# What we have now on low-tb-high 1/3

No interpolation



# What we have now on low-tb-high 2/3

#### Delauney interpolation



# What we have now on low-tb-high 3/3

Bilinear interpolation (#iteration=5)



#### Current status - hMSSM

- hMSSM interpretation:
  - Allison and Nikos produced a new map file with
    5 GeV on mA step (10 GeV previously); but the map file did not have phase points below
    tb=1.0 which causes interpolation issues in
    TGraph (closed contours are drawn @ tb~1).
    We asked for a margin below tb=1 (will be ready this week)



# Exclu. map (expected, mH)

Plot the exclusion maps before contour making



# Exclu. map (observed, mH)

#### Plot the exclusion maps before contour making





# bbtautau rate uncertainty (theory)

#### merge Low / High pT higgs categories

|              | stat | PDF       | ISR, FSR  | Scale     |
|--------------|------|-----------|-----------|-----------|
|              |      | L/H merge | L/H merge | L/H merge |
| 260          | 40k  | 2.3       | 5.5       | 3.0       |
| 300          | 40k  | 1.5       | 3.8       | 6.2       |
| 350          | 40k  | 3.4       | 7.9       | 3.7       |
| 400          | 40k  | 0.89      | 2.3       | 2.7       |
| 500          | 40k  | -3.1      | 6.0       | 4.5       |
| 800          | 40k  | 1.8       | 5.4       | 3.1       |
| 1000         | 40k  | 1.9       | 3.5       | 1.9       |
| non-resonant | 40k  | 2.5       | 4.2       | 4.2       |

Theory uncertainty [%]



| , m <sub>н</sub> |     |     |     |     |     |     |     |     |     | A   | 17  |     | _/  | 4   | S   |     | n   | It  | e   | r   | n   | a   |     | h   |     | M   | S   | S   | 5   | V   |                      |    |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------------|----|
| tanβ             | 2   | 236 | 243 | 250 | 257 | 266 | 274 | 282 | 291 | 300 | 309 | 318 | 327 | 337 | 346 | 366 | 365 | 374 | 384 | 393 | 403 | 413 | 422 | 432 | 442 | 461 | 461 |     |     |     | 500                  | _  |
| -                | .9  | 240 | 246 | 253 | 260 | 268 | 276 | 285 | 293 | 302 | 311 | 320 | 329 | 338 | 348 | 367 | 366 | 376 | 386 | 396 | 404 | 414 | 423 |     |     |     |     |     |     |     | 501                  |    |
| 4                | .0  | 244 | 249 | 256 | 263 | 271 | 279 | 287 | 296 | 304 | 313 | 322 | 331 | 340 | 349 | 369 | 368 | 377 | 387 | 396 | 406 |     |     | 434 |     |     |     |     |     |     | 502                  |    |
| 1                | 6   | 248 | 253 | 259 | 266 | 274 | 282 | 290 | 298 | 307 | 316 | 324 | 333 | 342 | 361 | 360 | 370 | 379 | 388 | 398 | 407 | 417 |     |     |     |     |     |     |     |     | 503                  | _  |
| 1                | .5  | 253 | 258 | 264 | 270 | 277 | 285 | 293 | 301 | 309 | 318 | 327 | 335 | 344 | 363 | 363 | 372 | 381 | 390 | 400 | 409 |     | 428 |     |     |     |     |     |     |     | 506                  |    |
| 1                | 4   | 260 | 264 | 269 | 275 | 282 | 289 | 297 | 304 | 313 | 321 | 330 | 338 | 347 | 356 | 365 | 374 | 383 | 393 | 402 | 411 | 420 |     |     |     |     |     |     |     |     | 506                  |    |
| 1                | .3  | 267 | 270 | 275 | 280 | 287 | 294 | 301 | 309 | 316 | 325 | 333 | 342 | 360 | 369 | 368 | 377 | 386 | 396 | 404 | 414 | 423 |     | 442 |     |     |     |     |     |     | 508                  | _  |
| 1                | .2  | 277 | 278 | 282 | 287 | 293 | 299 | 306 | 313 | 321 | 329 | 337 | 346 | 364 | 363 | 371 | 380 | 389 | 398 | 407 |     |     |     |     |     |     |     |     |     |     | 510                  |    |
|                  | 1.1 | 289 | 289 | 291 | 295 | 300 | 306 | 312 | 319 | 327 | 334 | 342 | 350 | 359 | 367 | 376 | 384 | 393 | 402 | 411 | 420 |     | 438 |     |     |     |     |     |     |     | 513                  |    |
|                  | 1   | 302 | 300 | 301 | 304 | 308 | 313 | 319 | 326 | 333 | 340 | 348 | 355 | 363 | 372 | 380 | 389 | 397 | 406 | 415 | 424 | 433 | 442 | 461 | 460 | 469 | 478 | 468 | 497 | 506 | 516                  |    |
|                  | 20  | 00  |     |     |     | 2   | 50  |     |     |     | 30  | 00  |     |     |     | 3   | 50  |     |     |     | 4(  | 00  |     |     |     | 4:  | 50  |     |     |     | 50<br>m <sub>A</sub> | 00 |

## hMSSM BR(H-hh)



#### hMSSM exclusion overlaid contours







|     | 0       |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | •   |     |     | -   |     |                |   |     |
|-----|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|---|-----|
| lηβ | 2       | 229 | 237 | 246 | 254 | 262 | 271 | 280 | 289 | 298 | 307 | 316 | 326 | 335 | 345 | 364 | 364 | 373 | 383 | 392 | 402 | 411 | 421 |     | 440 |     |     |     |     |     | 499            |   | 500 |
| ta  | 10      | 231 | 239 | 247 | 256 | 264 | 273 | 281 | 290 | 299 | 308 | 318 | 327 | 336 | 346 | 366 | 365 | 374 | 384 | 393 | 403 | 412 | 422 | 432 | 441 |     |     |     |     |     | 500            |   | 500 |
|     | 1.9     | 231 | 239 | 247 | 256 | 264 | 273 | 281 | 290 | 299 | 306 | 318 | 327 | 336 | 346 | 356 | 365 | 374 | 384 | 393 | 403 | 412 | 422 | 432 | 441 |     |     |     |     |     | 500            |   |     |
|     | 1 0     | 233 | 241 | 249 | 258 | 266 | 275 | 283 | 292 | 301 | 310 | 319 | 328 | 338 | 347 | 367 | 366 | 376 | 386 | 396 | 404 | 414 | 423 | 433 | 442 |     |     |     |     |     | 500            |   |     |
|     | 1.0     | 233 | 241 | 249 | 258 | 266 | 275 | 283 | 292 | 301 | 310 | 319 | 328 | 338 | 347 | 367 | 366 | 376 | 386 | 396 | 404 | 414 | 423 | 433 | 442 |     |     |     |     |     | 500            |   | 450 |
|     |         | 236 | 244 | 252 | 260 | 268 | 277 | 285 | 294 | 303 | 312 | 321 | 330 | 339 | 349 | 359 | 368 | 377 | 387 | 396 | 405 | 415 | 424 | 434 | 444 |     |     |     |     |     | 501            |   |     |
|     | 1.7     | 236 | 244 | 252 | 260 | 268 | 277 | 285 | 294 | 303 | 312 | 321 | 330 | 339 | 349 | 359 | 368 | 377 | 387 | 396 | 405 | 415 | 424 | 434 | 444 |     |     |     |     |     | 501            |   |     |
|     | 4 0     | 239 | 246 | 254 | 262 | 271 | 279 | 288 | 296 | 306 | 314 | 323 | 332 | 341 | 361 | 360 | 370 | 379 | 386 | 397 | 407 | 416 | 426 |     | 445 | 464 |     |     |     |     | 502            |   |     |
|     | 1.6     | 239 | 246 | 254 | 262 | 271 | 279 | 288 | 296 | 306 | 314 | 323 | 332 | 341 | 361 | 360 | 370 | 379 | 388 | 397 | 407 | 416 | 426 |     | 445 | 464 |     |     |     |     | 502            |   | 400 |
|     |         | 242 | 249 | 257 | 265 | 274 | 282 | 290 | 299 | 306 | 316 | 325 | 334 | 343 | 363 | 362 | 372 | 381 | 390 | 399 | 409 | 418 | 427 |     | 446 |     |     |     |     |     | 504            |   |     |
|     | 1.5     | 242 | 249 | 257 | 265 | 274 | 282 | 290 | 299 | 306 | 316 | 325 | 334 | 343 | 363 | 362 | 372 | 381 | 390 | 399 | 409 | 418 | 427 |     | 446 |     |     |     |     |     | 504            |   |     |
|     |         | 246 | 253 | 261 | 269 | 277 | 285 | 294 | 302 | 310 | 319 | 328 | 337 | 346 | 366 | 365 | 374 | 383 | 392 | 401 | 411 | 420 | 429 | 439 | 448 |     |     |     |     |     | 506            | _ | 350 |
|     | 1.4     | 246 | 253 | 261 | 269 | 277 | 285 | 294 | 302 | 310 | 319 | 328 | 337 | 346 | 366 | 366 | 374 | 383 | 392 | 401 | 411 | 420 | 429 | 439 | 448 |     |     |     |     |     | 506            |   |     |
|     |         | 250 | 257 | 265 | 273 | 281 | 289 | 297 | 305 | 314 | 322 | 331 | 340 | 349 | 358 | 367 | 376 | 386 | 394 | 404 | 413 | 422 |     | 441 |     |     |     |     |     |     | 507            |   |     |
|     | 1.3     | 260 | 257 | 265 | 273 | 281 | 289 | 297 | 306 | 314 | 322 | 331 | 340 | 349 | 358 | 367 | 376 | 386 | 394 | 404 | 413 | 422 |     | 441 |     |     |     |     |     |     | 507            |   |     |
|     |         | 256 | 263 | 270 | 278 | 285 | 293 | 301 | 309 | 317 | 326 | 334 | 343 | 352 | 361 | 371 | 379 | 388 | 397 | 406 | 415 | 425 | 434 | 443 |     |     |     |     |     |     | 509            |   | 300 |
|     | 1.2     | 266 | 263 | 270 | 278 | 285 | 293 | 301 | 309 | 317 | 326 | 334 | 343 | 352 | 361 | 371 | 379 | 388 | 397 | 406 | 415 | 425 | 434 | 443 |     |     |     |     |     |     | 509            |   |     |
|     |         | 263 | 270 | 277 | 284 | 292 | 299 | 307 | 314 | 322 | 330 | 338 | 347 | 356 | 365 | 374 | 383 | 392 | 401 | 409 | 418 | 427 | 437 | 446 |     |     |     |     |     |     | 511            |   |     |
|     | 1.1     | 263 | 270 | 277 | 284 | 292 | 299 | 307 | 314 | 322 | 330 | 338 | 347 | 356 | 365 | 374 | 383 | 392 | 401 | 409 | 418 | 427 | 437 | 445 |     |     |     |     |     |     | 511            |   | 250 |
|     |         | 271 | 278 | 284 | 291 | 299 | 306 | 312 | 319 | 327 | 335 | 343 | 361 | 360 | 369 | 378 | 387 | 396 | 404 | 413 | 422 | 431 | 440 | 449 | 458 | 467 | 476 | 485 | 495 | 504 | 513            |   |     |
|     | $2^{1}$ | 00  |     |     |     | 2   | 50  |     |     |     | 30  | 0   |     |     |     | 3   | 50  |     |     |     | 4(  | 00  |     |     |     | 4   | 50  |     |     |     | 50             | 0 |     |
|     | _       | -   |     |     |     | _   | -   |     |     |     |     |     |     |     |     |     |     |     |     |     |     | -   |     |     |     |     |     |     |     |     | m <sub>A</sub> |   |     |

m<sub>H</sub>

### low-tb-high BR(H-hh)



#### low-tb-high exclusion overlaid contours





# **TS** distributions





#### **TS** distribution

ts distributions at 300 GeV



# 1000 PLR

- Scan PLR for 1000 (a point with consistent p0 and limit) from mu 0 to 0.1
- mu\_hat (1000) in data = -0.00463018



# Channel limits [res]



# hMSSM

- EXP limits from interpolated points [270,295] are fairly high and they squeeze the exp exclusion
- while obs limits [280,295] enlarge obs exclusions due to their lower values



mass obs median 260 1.70982 1.07204 270 1.71558 1\_44778 **280 1.68024** 1.33733 **285 1.86328** 1.32284 **290 1.79416** 1.34562 **295 1.75** 1.31602 300 1.875 1.24402 305 1.02324 1.22968 310 1.38 1.18869 315 1.38127 1.15763 320 1.42977 1.14865 325 1.83205 1.15191 330 1.54764 1.10584 340 1.51589 1.04156 350 1.38609 0.91573 360 0.988968 0.838741 380 1.12399 0.776402 400 0.757059 0.551772 420 0.6811 0.497055 440 0.649041 0.469644 460 0.624596 0.432331 480 0.593367 0.405629 <u>500</u> 0.583098 0.398977

original mass points 27

# low-tb-high

- EXP limits from interpolated points [270,295] are fairly high and they squeeze the exp exclusion
- while obs limits [280,295] enlarge obs exclusions due to their lower values



mass obs median 260 1.68381 1.05287 270 1.75344 **1.49313** 280 1.64129 1.33096 285 1.86551 1.31533290 1.52873 1.34658 295 1.75 1.32489 300 1.875 1.27362 305 1.02888 1.23646 310 1.19488 1.38 315 1.41829 1.18453 1.38725 1.11229 320 325 1.783 1.10554 330 1.58405 1.14461 340 1.53546 1.04214 350 1.4123 0.925285 360 1.00468 0.86803 380 1.09831 0.758645 400 0.761744 0.549154 0.679285 0.500606 420 440 0.652151 0.463074 460 0.640985 0.443172 480 0.611022 0.419592 500 0.575566 0.387592

original mass points 28

#### The issue at 360/380

 At 360 380, limits show data excess but p0 value do not seem so



This is actually due to the definition of test statistic with which p0 values are calculated

$$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu} \ge 0\\ 0 & \hat{\mu} < 0 \end{cases}$$
 one-sided discovery 29

# mu\_hat

• mu\_hat values are plotted as function of mH



### P0 values

 Now, using a non-zero ts definition ("signed discovery") when mu\_hat<0, we have p0 values < 0.5 at 360 380</li>



# **TS** distribution

ts distributions at 360 and 380



 In general, ts distributions is asymmetric; so even when ts(data) goes to negative, p0 value can still remain below 0.5

#### PLR curve

- how could mu\_hat < 0 but obs limit is higher than median (data excess)?
- because PLR in data is wider than expected



# The issue at 920/940/960

- 920 940 960 have data deficit in limit plot but p0 values seems to be 0.5  $\sim$  0 sigma
- by now, we have checked with David and have consistent bbbb p0 values



# 920 PLR

- mu\_hat in obs is **positively** close to zero 7.28235e-10, giving p0 values ~0.5
- obs PLR is narrower than expected, this leads to lower limits in data
- but the non-parabolic structures seem strange, we further on check signal/bkg templates



# Check bbbb sig&bkg

- David checked the signal and background templates used in the fit
- There are bins with only signal but no backgrounds



## Interpretation hMSSM

Using all interpolated points to do the interpretation



# hMSSM

- EXP limits from interpolated points [270,295] are fairly high and they squeeze the exp exclusion
- while obs limits [280,295] enlarge obs exclusions due to their lower values



mass obs median 260 1.70982 1.07204 1\_44778 270 1.71558 **280 1.68024** 1.33733 **285 1.86328** 1.32284 290 1.79416 1.34562 295 1.75 1.31602 300 1.875 1.24402 305 1.02324 1.22968 310 1.38 1.18869 315 1.38127 1.15763 320 1.42977 1.14865 325 1.83205 1.15191 330 1.54764 1.10584 340 1.51589 1.04156 350 1.38609 0.91573 360 0.988968 0.838741 380 1.12399 0.776402 400 0.757059 0.551772 420 0.6811 0.497055 440 0.649041 0.469644 460 0.624596 0.432331 480 0.593367 0.405629 500 0.583098 0.398977

original mass points 38

# Interpretation low-tb-high

Using all interpolated points to do the interpretation



# low-tb-high

- EXP limits from interpolated points [270,295] are fairly high and they squeeze the exp exclusion
- while obs limits [280,295] enlarge obs exclusions due to their lower values



mass obs median 260 1.68381 1.05287 270 1.75344 **1.49313** 280 1.64129 1.33096 285 1.86551 1.31533290 1.52873 1.34658 295 1.32489 1.75<u>300</u> 1.875 1.27362 305 1.02888 1.23646 310 1.38 1.19488 315 1.41829 1.18453 320 1.38725 1.11229 325 1.783 1.10554 330 1.58405 1.14461 340 1.53546 1.04214 350 1.4123 0.925285 1.00468 0.86803 360 380 1.09831 0.758645 <u>400</u> 0.761744 0.549154 0.679285 0.500606 420 440 0.652151 0.463074 460 0.640985 0.443172 480 0.611022 0.419592 500 0.575566 0.387592

original mass points 40

# Summary

- wwyy and bbtautau added theoretical uncertainties, small effects
- combination:
  - limits and p0 at 360/380 are explained with the checks on mu\_hat and PRL
  - strange p0 values at 920/940/960 can be seen by PLR curves, but the bins with signal but no background in bbbb need to be fixed
- interpretation with all interpolated mass points shows smaller exclusions