HH pair searches status report

combination with wwyy, bbyy, bbττ, bbbb

Xiaohu SUN on behalf of all HH analyzers

CDS entry 13-07-2015 [wwyy]https://cds.cern.ch/record/1967498 IHEP [bbττ]https://cds.cern.ch/record/1967500 [combination]https://cds.cern.ch/record/1984111/ [paper draft]https://cds.cern.ch/record/2008753/

p0 scan

 High mass region updated after David rebinned mass templates in high mass region and removed rare signal events with very high mass

bbyy - nosyst

- translated bbyy models from hfitter to histfactory
- two bins, signal region and sideband

Projection of Profile of -log(likelihood)

Running with asymmptotics

hfitter: Median: 1.27806 Observed: 3.32702

histfactory: Median: 1.27806 Observed: 3.32702

mu_hat: exactly the same hfitter 1.37782 +1.04903 -0.713787 *histfactory* 1.37852 +1.04833 -0.714492

bbyy - allsyst

- translated bbyy models from hfitter to histfactory
- two bins, signal region and sideband

300GeV hfitter asimovData 8 Allsyst hfitter obsData 6 histfacotry asimovData 5 histfactory obsData 3 2 E 0 mu hat:

Projection of Profile of nllWithCons

Running with asymmptotics

hfitter: Median: 1.3046 Observed: 3.43874

histfactory: Median: 1.3049 Observed: 3.44047

In good agreement

hfitter 1.37813 +1.09113 -0.721945 histfactory 1.37693 +1.09272 -0.720698

hMSSM interpretation

• By plotting disconnected exclusion area piece by piece, one can have the isolated islands clearly

low-tb-high interpretation

• By plotting disconnected exclusion area piece by piece, one can have the isolated islands clearly

Current status

- During weekend, Li Qi and me run the toys for limits and p0 values
- Up to now, limits are done (limits for hMSSM and low-tbhigh are resubmitted since our jobs were either broken or moving slowly ...)
- From what we have, the limits are relatively lower than previous ones by 5% - 10%
- Especially at 305GeV, the obs is higher than median which was lower than median in last version ... investigating but found that previous limit is probably wrong
- THIS WEEK:
 - A potential closure approval Thursday
 - Conven a session on "The 10th Workshop of the LHC Higgs Cross Section Working Group" and will give a talk reviewing ATLAS+CMS extended scalar searches

bbtautau rate uncertainty (theory)

merge Low / High pT higgs categories

	stat	PDF	ISR, FSR	Scale
		L/H merge	L/H merge	L/H merge
260	40k	2.3	5.5	3.0
300	40k	1.5	3.8	6.2
350	40k	3.4	7.9	3.7
400	40k	0.89	2.3	2.7
500	40k	-3.1	6.0	4.5
800	40k	1.8	5.4	3.1
1000	40k	1.9	3.5	1.9
non-resonant	40k	2.5	4.2	4.2

Theory uncertainty [%]

, m _н										A	17		_/	4	S		n	It	e	r	n	a		h		M	S	S	5	V		
tanβ	2	236	243	250	257	266	274	282	291	300	309	318	327	337	346	366	365	374	384	393	403	413	422	432	442	461	461				500	_
-	.9	240	246	253	260	268	276	285	293	302	311	320	329	338	348	367	366	376	386	396	404	414	423								501	
4	.0	244	249	256	263	271	279	287	296	304	313	322	331	340	349	369	368	377	387	396	406			434							502	
1	6	248	253	259	266	274	282	290	298	307	316	324	333	342	361	360	370	379	388	398	407	417									503	_
1	.5	253	258	264	270	277	285	293	301	309	318	327	335	344	363	363	372	381	390	400	409		428								506	
1	4	260	264	269	275	282	289	297	304	313	321	330	338	347	356	365	374	383	393	402	411	420									506	
1	.3	267	270	275	280	287	294	301	309	316	325	333	342	360	369	368	377	386	396	404	414	423		442							508	_
1	.2	277	278	282	287	293	299	306	313	321	329	337	346	364	363	371	380	389	398	407											510	
	1.1	289	289	291	295	300	306	312	319	327	334	342	350	359	367	376	384	393	402	411	420		438								513	
	1	302	300	301	304	308	313	319	326	333	340	348	355	363	372	380	389	397	406	415	424	433	442	461	460	469	478	468	497	506	516	
	20	00				2	50				30	00				3	50				4(00				4:	50				50 m _A	00

hMSSM BR(H-hh)

hMSSM exclusion overlaid contours

	0																									•			-				
lηβ	2	229	237	246	254	262	271	280	289	298	307	316	326	335	345	364	364	373	383	392	402	411	421		440						499		500
ta	10	231	239	247	256	264	273	281	290	299	308	318	327	336	346	366	365	374	384	393	403	412	422	432	441						500		500
	1.9	231	239	247	256	264	273	281	290	299	306	318	327	336	346	356	365	374	384	393	403	412	422	432	441						500		
	1 0	233	241	249	258	266	275	283	292	301	310	319	328	338	347	367	366	376	386	396	404	414	423	433	442						500		
	1.0	233	241	249	258	266	275	283	292	301	310	319	328	338	347	367	366	376	386	396	404	414	423	433	442						500		450
		236	244	252	260	268	277	285	294	303	312	321	330	339	349	359	368	377	387	396	405	415	424	434	444						501		
	1.7	236	244	252	260	268	277	285	294	303	312	321	330	339	349	359	368	377	387	396	405	415	424	434	444						501		
	4 0	239	246	254	262	271	279	288	296	306	314	323	332	341	361	360	370	379	386	397	407	416	426		445	464					502		
	1.6	239	246	254	262	271	279	288	296	306	314	323	332	341	361	360	370	379	388	397	407	416	426		445	464					502		400
		242	249	257	265	274	282	290	299	306	316	325	334	343	363	362	372	381	390	399	409	418	427		446						504		
	1.5	242	249	257	265	274	282	290	299	306	316	325	334	343	363	362	372	381	390	399	409	418	427		446						504		
		246	253	261	269	277	285	294	302	310	319	328	337	346	366	365	374	383	392	401	411	420	429	439	448						506	_	350
	1.4	246	253	261	269	277	285	294	302	310	319	328	337	346	366	366	374	383	392	401	411	420	429	439	448						506		
		250	257	265	273	281	289	297	305	314	322	331	340	349	358	367	376	386	394	404	413	422		441							507		
	1.3	260	257	265	273	281	289	297	306	314	322	331	340	349	358	367	376	386	394	404	413	422		441							507		
		256	263	270	278	285	293	301	309	317	326	334	343	352	361	371	379	388	397	406	415	425	434	443							509		300
	1.2	266	263	270	278	285	293	301	309	317	326	334	343	352	361	371	379	388	397	406	415	425	434	443							509		
		263	270	277	284	292	299	307	314	322	330	338	347	356	365	374	383	392	401	409	418	427	437	446							511		
	1.1	263	270	277	284	292	299	307	314	322	330	338	347	356	365	374	383	392	401	409	418	427	437	445							511		250
		271	278	284	291	299	306	312	319	327	335	343	361	360	369	378	387	396	404	413	422	431	440	449	458	467	476	485	495	504	513		
	2^{1}	00				2	50				30	0				3	50				4(00				4	50				50	0	
	_	-				_	-															-									m _A		

m_H

low-tb-high BR(H-hh)

16

low-tb-high exclusion overlaid contours

TS distributions

TS distribution

ts distributions at 300 GeV

1000 PLR

- Scan PLR for 1000 (a point with consistent p0 and limit) from mu 0 to 0.1
- mu_hat (1000) in data = -0.00463018

Channel limits [res]

hMSSM

- EXP limits from interpolated points [270,295] are fairly high and they squeeze the exp exclusion
- while obs limits [280,295] enlarge obs exclusions due to their lower values

mass obs median 260 1.70982 1.07204 270 1.71558 1_44778 280 1.68024 1.33733 **285 1.86328** 1.32284 **290 1.79416** 1.34562 **295 1.75** 1.31602 300 1.875 1.24402 305 1.02324 1.22968 310 1.38 1.18869 315 1.38127 1.15763 320 1.42977 1.14865 325 1.83205 1.15191 330 1.54764 1.10584 340 1.51589 1.04156 350 1.38609 0.91573 360 0.988968 0.838741 380 1.12399 0.776402 400 0.757059 0.551772 420 0.6811 0.497055 440 0.649041 0.469644 460 0.624596 0.432331 480 0.593367 0.405629 <u>500</u> 0.583098 0.398977

original mass points 22

low-tb-high

- EXP limits from interpolated points [270,295] are fairly high and they squeeze the exp exclusion
- while obs limits [280,295] enlarge obs exclusions due to their lower values

mass obs median 260 1.68381 1.05287 270 1.75344 **1.49313** 280 1.64129 1.33096 285 1.86551 1.31533290 1.52873 1.34658 295 1.75 1.32489 300 1.875 1.27362 305 1.02888 1.23646 310 1.19488 1.38 315 1.41829 1.18453 1.38725 1.11229 320 325 1.783 1.10554 330 1.58405 1.14461 340 1.53546 1.04214 350 1.4123 0.925285 360 1.00468 0.86803 380 1.09831 0.758645 400 0.761744 0.549154 0.679285 0.500606 420 440 0.652151 0.463074 460 0.640985 0.443172 480 0.611022 0.419592 500 0.575566 0.387592

original mass points 23

The issue at 360/380

 At 360 380, limits show data excess but p0 value do not seem so

This is actually due to the definition of test statistic with which p0 values are calculated

$$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu} \ge 0 \\ 0 & \hat{\mu} < 0 \\ & \text{one-sided discovery} \end{cases} 24$$

mu_hat

• mu_hat values are plotted as function of mH

P0 values

 Now, using a non-zero ts definition ("signed discovery") when mu_hat<0, we have p0 values < 0.5 at 360 380

TS distribution

ts distributions at 360 and 380

 In general, ts distributions is asymmetric; so even when ts(data) goes to negative, p0 value can still remain below 0.5

PLR curve

- how could mu_hat < 0 but obs limit is higher than median (data excess)?
- because PLR in data is wider than expected

The issue at 920/940/960

- 920 940 960 have data deficit in limit plot but p0 values seems to be 0.5 \sim 0 sigma
- by now, we have checked with David and have consistent bbbb p0 values

920 PLR

- mu_hat in obs is **positively** close to zero 7.28235e-10, giving p0 values ~0.5
- obs PLR is narrower than expected, this leads to lower limits in data
- but the non-parabolic structures seem strange, we further on check signal/bkg templates

Check bbbb sig&bkg

- David checked the signal and background templates used in the fit
- There are bins with only signal but no backgrounds

Current status – low-tb-high

- Iow-tb-high interpretation:
 - use full resolution in map file: 5 GeV vs 0.1
 - before, we use mA 10 GeV with smooth, did not notice the fine structures in obs

compare no smoothing and smoothing

Excl. maps

- Exclusion map before plotting contours
- Bins are filled with theo/limit, so once the bin content >1, this bin is excluded
- plots only show bins with theo/limit >1

un 2.4

2.2

1.8

1.6

1.4 1.2

0.8

200

250

300

Excl. map (expected, mH)

Excl. map (observed, mH)

What we have now on low-tb-high 1/3

No smoothing

What we have now on low-tb-high 2/3

Delauney interpolation

What we have now on low-tb-high 3/3

Bilinear interpolation (#iteration=5)

Current status - hMSSM

- hMSSM interpretation:
 - Allison and Nikos produced a new map file with
 5 GeV on mA step (**10** GeV previously); but the map file did not have phase points below tb=1.0 which causes interpolation issues in TGraph (closed contours are drawn @ tb~1). We asked for a margin below tb=1. <- just got the file after our informal meeting

Exclu. map (expected, mH)

Plot the exclusion maps before contour making

Exclu. map (observed, mH)

Plot the exclusion maps before contour making

41

Exclu. map (observed, theo/limit)

Again I put theo_xsec/limit in each bin

Observed excluded regions Using **new** map file with step(mA)=5GeV

What we have in hMSSM (no smooth)

hMSSM with no smooth

What we have in hMSSM (no smooth)

hMSSM with Delauney smooth

Current status - limits

 In low mass: now, we have consistency among p0, limits and mu_hat, but PRL curves drop when mu goes to negative (from bbyy, also non-parabolic).
 One might need to inject data toys

 In high mass: non-parabolic PRL in bbbb, David rebinned (2->1) in high mass to avoid bins with signal but no backgrounds (just got ws after lunch, thanks to David)

Current status – limits (high mass)

 with new bbbb workspaces after merging two bins into one in high mass region. still the same...

during our informal meeting,

I received from David. One background variation template is still having bins with no bkg events He continues to work on that to make sure no signal events going off the peak too far away