Weekly report IHEP

Xiaohu SUN

21-07-2015

CDS entry [wwyy]https://cds.cern.ch/record/1967498 [bbττ]https://cds.cern.ch/record/1967500 [combination]https://cds.cern.ch/record/1984111/ [paper draft]https://cds.cern.ch/record/2008753/

STATUS – HH combination

- Last Thursday, I presented HH combination on Higgs plenary and we had passed closure approval
 - https://indico.cern.ch/event/433602/
- CDS entry
 - [wwyy]https://cds.cern.ch/record/1967498
 - [bbττ]https://cds.cern.ch/record/1967500
 - [combination]https://cds.cern.ch/record/1984111/
 - [paper draft]https://cds.cern.ch/record/2008753/
- All main issues have been solved so far, we can move forward :)

Recall the main issues

- Issues of:
 - p0 values @ 360 380
 - p0 values @ 920 940 960

Solved issues and updates

- low mass region (260-500), we had data excess indicated by limits but p0~1 and mu_hat<0 @360,380
 - changed TS definition (signed one-sided discovery)
 - checked PLR curves, understood the destructive inference between bbyy and wwyy+bbtautau (thanks to Aaron)
 - translate bbyy model from hfitter to histfactory in order to have automated protection against negative pdf
- high mass region (500-1000), we had p0 dropping to ~0.5 @920,940,960 which is not consistent with data deficit seen in limits
 - rebinned histogram for fit in bbbb to avoid bins with zero data, zero bkg but non-zero signal (thanks to David)
 - understood the linear and less linear curves in bbbb
- interpretation on hMSSM and low-tb-high has strange structure due to jumping obs limits, after using finer theory map
 - properly draw disconnected obs exclusion regions instead of manually modifying any TGraph

p0 and limits

- One-sided discovery TS is set to 0 when mu_hat < 0
- Signed one-sided discovery TS is not
- In this case, p0 values are less than one
- So now, p0<1 consistent with obs limit>med

PLR and limits

- Obs limit > exp limit with mu_hat < 0
- Observed bbtautau and WWyy interfere destructively with bbyy and bring the combined curve to lower -In L values since they favor muhat ~0.6 and ~4.2, while the expected is OK

Change statistical framework - nosyst

- bbyy originally built up its model in hfitter which does not have a protection against negative pdf; so we translate the model into Histfactory
- two bins, signal region and sideband

Asymmptotics hfitter: Median: 1.27806 **Observed: 3.32702** histfactory: Median: 1.27806 **Observed: 3.32702** exactly the same mu hat: hfitter 1.37782 +1.04903 -0.713787 histfactory 1.37852 +1.04833 -0.714492 7

Change statistical framework - allsyst

after adding all systematic uncertainties

Projection of Profile of nllWithCons

Running with asymmptotics

hfitter: Median: 1.3046 **Observed: 3.43874**

histfactory: Median: 1.3049 **Observed: 3.44047**

In good agreement

hfitter 1.37813 +1.09113 -0.721945 histfactory 1.37693 +1.09272 -0.720698

High mass issues

- Limits @ 920 940 960 show data deficit but p0 values do not, this is due to bins with only signal but no background in fitting template
- rebinned the histogram and removed single signal events in very high mass region
- now the p0 values are reasonably close to 1

```
+++ nosyst +++
-ln P(N|E) = -N*ln(E) + E
For N=0 and E = mu*S+B ~ mu*S:
-ln P(0|mu*S) = mu*S
```

```
+++ syst +++

-ln P(0|mu*S)*Gaus ~

mu*S*(1+pull*eps) + pull

= mu*S + pull*(1+mu*S*eps)
```


Limit plot (previously)

• Previous limit plot from last Higgs plenary

Limit plot

• New limits slightly lower than before

Changes in low mass res

- New limits slightly lower than before after
 - correlating BR(yy) 5% in wwyy and bbyy
 - correlating PH_ISO 2% and PH_ID 2.5% in wwyy and bbyy
 - changing of the statistical framework from hfitter to histfactory which a protection on negative pdf is applied

p0 scan (previously, last Higgs plenary)

p0 scan

Local p_0

14

Interpretation updates

- Since last Higgs plenary
 - improve the mA step from 10 GeV to 5 GeV in the theory map file
 - switch off any smooth algorithm
 - small structures are found in obs due to the jumping obs limits, which leads to contour making issue (wrongly interpolated contours)
 - lower limits now leads to fatter exclusions

hMSSM interpretation

 By plotting disconnected exclusion area piece by piece, one can have the isolated islands clearly

hMSSM interpretation overview

 Thanks to Nikos, the whole picture of hMSSM interpretation from various channels is produced

Iow-tb-high interpretation

 By plotting disconnected exclusion area piece by piece, one can have the isolated islands clearly

low-tb-high interpretation

solid mask

Summary of HH

- After fixing the issues, we asked for closure approval for hh combination with the updated contents below:
 - limit plot
 - local p0 value plot
 - hMSSM interpretation
 - low-tb-high interpretation
- And we got approved

HH in RUN II

- I continue to do the combination for HH in RUN II
- Progresses had been made in converging object definitions among bbyy, bbtautau and bbbb
 - Bjets: MV2C20
 - Jets: can use EM instead of LC for now (but bbbb would like to look at also LC to compare the performance)
- It is proposed that bbyy and bbtautau run with #jets<=2 since bbbb asks >=3
- Setting up SVN repository to let individual analyzers check in preliminary workspaces
- Building up a twiki to document combination in order to do it in a more collaborative and efficient way

	$M_{\chi} = 325 \text{GeV}$		$M_X = 400 \text{GeV}$		SM	
	2 b-tag	3 b-tag	2 b-tag	3 b-tag	2 b-tag	3 b-tag
85 %	3923	12	5498	17	8274	51
77%	3375	5	4669	10	7181	29
70%	2856	5	3991	7	6123	17 bbvv
60%	2170	1	3003	4	4550	9 Jame

21

LHC Higgs XS Working Group

- Working group twiki (fully public)
 - https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG
- BSM Higgs (WG3) twiki
 - https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG3
- ATLAS conveners
 - ATLAS Steering Committee: Reisaburo Tanaka & Markus Schumacher
 - WG3 (BSM Higgs) overal: Nikolaos Rompotis
 - Neutral MSSM: Allison McCarn
 - Charged Higgs: Steve Sekula
 - Extended scalar: Xiaohu Sun
 - Exotics: Shikma Bressler
 - Cross WG: bbh production Matthew Beckingham

Workshop: 15 – 17 July 2015

The 10th Workshop of the LHC Higgs Cross Section Working Group

chaired by Charalampos Anastasiou (ETH, Zurich), Daniel de Florian (Universidad de Buenos Aires), Christophe Grojean (ICREA, Barcelona), Fabio Maltoni (Universite Catholique de Louvain), Chiara Mariotti (INFN Torino), Alexandre Nikitenko (Imperial College), Markus Schumacher (Albert-Ludwigs-Universitaet Freiburg), Reisaburo Tanaka (LAL, Orsay)

📰 from Wednesday, 15 July 2015 at 09:00 to Friday, 17 July 2015 at 17:00 (Europe/Zurich)

Council Chamber / Main Auditorium / Filtration Plant (Check agenda for meeting room!)

Manage 🔻

Description The LHC Higgs cross-section working group (HXSWG) was created in January 2010. The aim of this group was to produce agreements on cross sections, branching ratios and pseudo-observables relevant to SM and MSSM Higgs boson(s). In spring 2012, the group was restructured and new subgroups were added with the goal of discussing Higgs property/measurement and BSM extensions. Three CERN Reports have been completed, "Inclusive Observables" (CERN-2011- 002), "Differential Distributions" (CERN-2012-002), and "Higgs Properties" (CERN-2013-004). These achievements facilitated the comparison and combination of Higgs results at LHC since the beginning of the LHC physics programme.

After 5 years of activities, our group has been reorganized in order to prepare the future run at higher energy. The group is organized in three working groups: (1) cross-sections & branching ratios, (2) Higgs properties and (3) beyond the Standard Model. Each of these groups involve some task-force subgroups.

In this 10th general assembly meeting, we shall review the progresses made in the various groups and we shall finalize the recommendations to conduct the analyses with the LHC RUN-2 data in preparation for Moriond 2016. The guidlines for the CERN Report 4 (YR4) document will be finalized, aiming its publication early 2016.

🔎 Bergerie... 🛛 🔂 Bergerie...

LHC Higgs XS Working Group

- I have been giving a talk on "Extended Scalars Searches and interpretations in ATLAS/CMS"
 - https://indico.cern.ch/event/350628/session /1/contribution/37/attachments/1126139/1607 806/2HDM-ATLAS-CMS-UpTo2015.pdf
- The talk covers recent results from both ATLAS and CMS related to extended scalar searches where interpretations were performed
- The relevant searches without interpretations were not covered in the talk

Relevant searches in ATLAS + CMS

- Only results with interpretations are presented
- ALTAS
 - **A→Zh**, PLB 744 (2015) 163-183 2HDM
 - **H→hh→bbbb**, arXiv:1506.00285 2HDM
 - **SM Higgs couplings**, ATLAS-CONF-2014-010 2HDM, EW singlet
 - H±→WZ, PRL 114, 231801 (2015) "LHCHXSWG-2015-001 (2015.05.05)" Triplet
- *CMS*
 - H→hh & A→Zh PRD 90, 112013 2HDM
 - **A→Zh** arxiv:1504.04710 2HDM
 - **H/A→Z A/H** CMS-PAS-HIG-15-001 2HDM

2HDM specification

- In the context of the *CP-conserving* 2HDM
- Yukawa coupling arrangements define **four** different 2HDM types: <u>Type I, II, Lepton-specific, Flipped</u>
- Xsec is calculated with *SusHi* version 1.3.0 (ATLAS), 1.2.0 (CMS)
- BRs calculated with **2HDMC** version 1.6.4 and with the assumption of $m(A) = m(H) = m(H^{\pm})$, m(h) = 125 GeV and $m_{12}^2 = m_A^2 \tan\beta/(1 + \tan^2\beta)$
- The *width* effects are taken into account, for example, up to 5% of m(A) in A→Zh and 15% of m(H) in H→hh→bbbb (ATLAS)
- **b**-associated production is considered and contributes in high tan β

ATLAS A→Zh

• Look for a CP-odd Higgs boson A decaying to Zh

ATLAS A→Zh Type II 2HDM

ATLAS H→hh→bbbb

- Look for a CP-even Higgs boson H decaying to hh→bbbb
- Sensitive in high mass regime

• Width effects are taken into account up to 15%*m(H) and more

ATLAS H→hh→bbbb Type II 2HDM

Type II $cos(\beta - \alpha) = -0.20$

width/m(H) within 15% for $m(H)=500 \text{GeV}_{30}$ up to 23% for $m(H)=1000 \text{GeV}^{30}$

Type II m(A) = 500GeV

ATLAS SM Higgs couplings **to be updated**

• Indirect constraints on BSM physics via SM Higgs couplings including $h \rightarrow \gamma \gamma$, ZZ, WW, $\tau \tau$, bb

31

ATLAS H[±]→WZ

- Search for a charged Higgs boson produced in the VBF Mode with decay of H[±] \rightarrow WZ (tree level), W \rightarrow qq and Z \rightarrow ee/µµ
- The data are compared with the Georgi-Machacek Higgs triplet model (GMHTM)

CMS H/A→multilepton/diphoton

 Inclusively search final states with three or four charged leptons and a resonant pair of photon + at least one leptons, for H→hh or A→Zh

2HDM Type I m(H)=m(A)=300GeV

anb

2HDM Type II m(H)=m(A)=300GeV

CMS A→Zh

Look for CP-odd pseudoscalar A to Zh→llbb

CMS H/A→Z A/H

• Search for H/A \rightarrow Z A/H \rightarrow IIbb or II $\tau\tau$

Summary of the workshop

• WG3 domains

◊ Neutral MSSM: flagship! in xsec and BR

Extended scalars: singlets, doublets, triplets; LHCHXSWG-2013-001 (2HDM), LHCHXSWG-2015-001 (triplet); currently identify benchmarks for 2HDM and centrally produced numbers, width and interference

- \Diamond NMSSM
- \Diamond Exotic Higgs decays
- ♦ bbH production (with WG1): 4FS and 5FS
- Currently an huge effort to explore benchmarks in the NMSSM and the 2HDM
 - https://twiki.cern.ch/twiki/bin/view/LHCPhysics/L HCHXSWG3Benchmarks2HDM
- NEW May 2015, Low tanβ scenarios, LHCHXSWG-2015-001 public note

	~		n	ղ	4					A	17		_/	4	S		n	It	e	r	n	a		h		M	S	S	5	V			
tanβ	2	236	243	250	257	266	274	282	291	300	309	318	327	337	346	366	365	374	384	393	403	413	422	432	442	461	461				500	_	
-	.9	240	246	253	260	268	276	285	293	302	311	320	329	338	348	367	366	376	386	396	404	414	423								501		
4	.0	244	249	256	263	271	279	287	296	304	313	322	331	340	349	369	368	377	387	396	406			434							502		
1	6	248	253	259	266	274	282	290	298	307	316	324	333	342	361	360	370	379	388	398	407	417									503	_	
1	.5	253	258	264	270	277	285	293	301	309	318	327	335	344	363	363	372	381	390	400	409		428								506		
1	4	260	264	269	275	282	289	297	304	313	321	330	338	347	356	365	374	383	393	402	411	420									506		
1	.3	267	270	275	280	287	294	301	309	316	325	333	342	360	369	368	377	386	396	404	414	423		442							508	_	
1	.2	277	278	282	287	293	299	306	313	321	329	337	346	364	363	371	380	389	398	407											510		
	1.1	289	289	291	295	300	306	312	319	327	334	342	350	359	367	376	384	393	402	411	420		438								513		
	1	302	300	301	304	308	313	319	326	333	340	348	355	363	372	380	389	397	406	415	424	433	442	461	460	469	478	468	497	506	516		
	200					2	50				30	00			350					400							50		500 m _a				

hMSSM BR(H-hh)

	0																			•			-										
ľΠβ	2	229	237	246	254	262	271	280	289	298	307	316	326	335	345	364	364	373	383	392	402	411	421		440						499		500
ta	1 0	231	239	247	256	264	273	281	290	299	308	318	327	336	346	366	365	374	384	393	403	412	422	432	441						500		500
	1.9	231	239	247	256	264	273	281	290	299	306	318	327	336	346	356	365	374	384	393	403	412	422	432	441						500		
	4 0	233	241	249	258	266	275	283	292	301	310	319	328	338	347	367	366	376	386	396	404	414	423	433	442						500		
	1.0	233	241	249	258	266	275	283	292	301	310	319	328	338	347	367	366	376	386	396	404	414	423	433	442						500		450
		236	244	252	260	268	277	285	294	303	312	321	330	339	349	359	368	377	387	396	405	415	424	434	444						501		
	1.7	236	244	252	260	268	277	285	294	303	312	321	330	339	349	359	368	377	387	396	405	415	424	434	444						501		
	4 0	239	246	254	262	271	279	288	296	306	314	323	332	341	361	360	370	379	386	397	407	416	426		445	464					502		
	1.6	239	246	254	262	271	279	288	296	306	314	323	332	341	361	360	370	379	388	397	407	416	426		445	464					502		400
		242	249	257	265	274	282	290	299	306	316	325	334	343	363	362	372	381	390	399	409	418	427		446						504		
	1.5	242	249	257	265	274	282	290	299	306	316	325	334	343	363	362	372	381	390	399	409	418	427		446						504		
	1.4	246	253	261	269	277	285	294	302	310	319	328	337	346	366	365	374	383	392	401	411	420	429	439	448						506	_	350
		246	253	261	269	277	285	294	302	310	319	328	337	346	366	366	374	383	392	401	411	420	429	439	448						506		
		250	257	265	273	281	289	297	305	314	322	331	340	349	358	367	376	386	394	404	413	422		441							507		
	1.3	260	257	265	273	281	289	297	306	314	322	331	340	349	358	367	376	386	394	404	413	422		441							507		
		256	263	270	278	285	293	301	309	317	326	334	343	352	361	371	379	388	397	406	415	425	434	443							509		300
	1.2	266	263	270	278	285	293	301	309	317	326	334	343	352	361	371	379	388	397	406	415	425	434	443							509		
		263	270	277	284	292	299	307	314	322	330	338	347	356	365	374	383	392	401	409	418	427	437	446							511		
	1.1	263	270	277	284	292	299	307	314	322	330	338	347	356	365	374	383	392	401	409	418	427	437	445							511		250
		271	278	284	291	299	306	312	319	327	335	343	361	360	369	378	387	396	404	413	422	431	440	449	458	467	476	485	495	504	513		
	2^{1}	00				2	50				30	0				3	50				4(00				4	50				50	0	
						_	-															-									m _A		

m_H

low-tb-high BR(H-hh)

43

TS distributions (combined)

TS distribution (combined)

• ts distributions at 300 GeV

1000 PLR (combined)

- Scan PLR for 1000 (a point with consistent p0 and limit) from mu 0 to 0.1
- mu_hat (1000) in data = -0.00463018

Channel limits [res]

The issue at 360/380

 At 360 380, limits show data excess but p0 value do not seem so

This is actually due to the definition of test statistic with which p0 values are calculated

$$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu} \ge 0 \\ 0 & \hat{\mu} < 0 \\ & \text{one-sided discovery} \end{cases}$$

mu_hat

• mu_hat values are plotted as function of mH

P0 values

 Now, using a non-zero ts definition ("signed discovery") when mu_hat<0, we have p0 values < 0.5 at 360 380

TS distribution (combined)

ts distributions at 360 and 380

 In general, ts distributions is asymmetric; so even when ts(data) goes to negative, p0 value can still remain below 0.5

The issue at 920/940/960

- 920 940 960 have data deficit in limit plot but p0 values seems to be 0.5 \sim 0 sigma
- by now, we have checked with David and have consistent bbbb p0 values

920 PLR

- mu_hat in obs is **positively** close to zero 7.28235e-10, giving p0 values ~0.5
- obs PLR is narrower than expected, this leads to lower limits in data
- but the non-parabolic structures seem strange, we further on check signal/bkg templates

Check bbbb sig&bkg

- David checked the signal and background templates used in the fit
- There are bins with only signal but no backgrounds

Current status – low-tb-high

- Iow-tb-high interpretation:
 - use full resolution in map file: 5 GeV vs 0.1
 - before, we use mA 10 GeV with smooth, did not notice the fine structures in obs

compare no smoothing and smoothing

Excl. maps

- Exclusion map before plotting contours
- Bins are filled with theo/limit, so once the bin content >1, this bin is excluded
- plots only show bins with theo/limit >1

un 2.4

2.2

1.8

1.6

1.4 1.2

0.8

200

250

300

Excl. map (expected, mH)

Excl. map (observed, mH)

What we have now on low-tb-high 1/3

No smoothing

What we have now on low-tb-high 2/3

Delauney interpolation

What we have now on low-tb-high 3/3

Bilinear interpolation (#iteration=5)

Current status - hMSSM

- hMSSM interpretation:
 - Allison and Nikos produced a new map file with
 5 GeV on mA step (**10** GeV previously); but the map file did not have phase points below tb=1.0 which causes interpolation issues in TGraph (closed contours are drawn @ tb~1). We asked for a margin below tb=1. <- just got the file after our informal meeting

Exclu. map (expected, mH)

Plot the exclusion maps before contour making

Exclu. map (observed, mH)

Plot the exclusion maps before contour making

Exclu. map (observed, theo/limit)

Again I put theo_xsec/limit in each bin

Observed excluded regions Using **new** map file with step(mA)=5GeV

hMSSM interpretation

• By plotting disconnected exclusion area layer by layer, one can have the isolated islands clearly

low-tb-high interpretation

• By plotting disconnected exclusion area layer by layer, one can have the isolated islands clearly

305 GeV

- @ 305GeV, we used to have obs limit 1.24, while now we have 1.36
- Anyway, their PRL curves are quite similar, both indicating obs limits at 1.3~1.4

Investigations from Aaron Likelihood curves

- Solid lines are just to guide the eye.
- Dots are exact -In L computations

$$-\ln P(N|E) = -N^*\ln(E) + E$$

For N=0 and E =
$$mu^*S+B \sim mu^*S$$
:

Systematics cause a curve less than linear since NPs will be pulled negative as mu grows, reducing the effective S:

-In P(0|mu*S)*Gaus ~ mu*S*(1+pull*eps) + pull = mu*S + pull*(1+mu*S*eps)

Investigations from Aaron Likelihood curves

Investigations from Aaron

Obs limit > exp limit with muhat < 0

- The strongest channel, bbyy, shows the strong linear behavior and therefore is relatively weaker the further out you scan in mu, ie the uncertainty on mu grows larger with mu:
 - Linear qmu: sigma(mu)~mu/sqrt(qmu)~mu / sqrt(mu) ~ sqrt(mu)
 - Parabolic qmu: sigma(mu)~mu/sqrt(qmu)~mu/(sqrt(mu^2)~constant
- The weaker WWyy and bbtautau channels are not only parabolic, but have excesses, and play a more important role around mu=mu_up95
- Next two slides show the likelihood curves for observed and asimov data overlayed. The combined -In L is roughly the sum of the three individual ones
- Observed bbtautau and WWyy interfere destructively with bbyy and bring the combined curve to lower -In L values since they favor muhat ~0.6 and ~4.2
- The three Asimov datasets are nice and coherent and interfere constructively, giving a nice and tight -In L curve
- This means that qmu_Asimov will cross the ~3.84 barrier at lower values of mu than qmu_Obs, leading to mu_up_exp < mu_up_obs, even though muhat < 0

Investigations from Aaron

Investigations from Aaron

Investigations from Aaron Other bbyy issues

- bbyy built from similar framework as Hyy
- Hyy of course uses continuous PDFs to describe S and B
- bbyy should be single bin counting experiment, but seems like a it uses a 100 bin uniform distribution in myy due to this

framework Data is a single weighted event at one point in the distribution

S and B are uniform PDFs here and here

Investigations from Aaron Other bbyy issues

- Not necessarily an issue for bbyy channel alone. Since the PDF is uniform then it should be mathematicall equivalent to one bin of P(N|E), but it's not very nice
- Also the RooAddPdf that's used doesn't have protection against negative expected events, so ghost events would need to be added to keep the PDF from going negative. HistFactory uses RooRealSumPdf that would protect against this
- Individual channel p0 may be correct, but combined p0 will for sure be wrong since bbyy won't tell combined likelihood that the PDF is negative
- · Solution is either to add ghost events in toys or switch to RooRealSumPdf

S_SR~2.5, B_SR~0.2 => muhat_min ~ -0.08

mu_hat NEW

Previously we had 360 380 mu_hat < 0

