13TeV VBF $H \rightarrow \gamma \gamma$ analysis

Yu Zhang 09-21

MVA

input variables

$$-m_{jj},\Delta\eta_{jj},\Delta\Phi_{yy,jj},p_{Tt},\Delta R^{min}_{y,j},\eta^*$$

- preselection
 - Njet>=2, $\Delta \eta_{jj}$ >2, η^* <5
- configuration
 - default one same as run1
- training sample
 - SignalTree:VBF
 - BkgTree:Sherpa γγ+jets,RevID,RevIso
 - Ratio: 1:1
- optimization
 - scan BDT cut value
 - get threshold value for VBF tight and loose category
 - plot signal and bkgshape in each category

BDT value

- obtain weight xml file after training
- calculate BDT value with xml file
- plot BDT value of signal and bkg samples

category optimization

- significance VS BDT cut value
- tight [0.95,1],0.565σ
- loose [0.81,0.95],0.326σ
- combined 0.652σ

fit sideband

- left is VBF tight ,right is VBF loose
- fit sideband with exponential
- get the bkg events number
- calculate bkg number in [122.5,127.5]GeV
- red point is ggF+VBF+bkg,black point is bkg
- in loose category ,bkg has a peak near 125GeV
- BDT is correlated to $m_{\gamma\gamma}$?

event number after BDT cut

signal region : $m_{\gamma\gamma}$ [122.5,127.5]GeV

	VBF tight Category	VBF loose category	all VBF category
ggF	0.069	0.359	0.428
VBF	0.296	0.629	0.925
bkg	0.122	3.152	3.274
significance	0.565	0.326	0.652

$$\sigma_{VBF} = \sqrt{2 \times ((N_{VBF} + N_{ggF} + N_{Background}) \times \ln(1 + \frac{N_{VBF}}{N_{ggF} + N_{Background}}) - N_{VBF})}$$

- when s+b is not large enough ,this formular may not work
- toy throwing is ongoing

review 8TeV result

Combined significance

Events	Cut-based loose	Cut-based ti	ght N	AVA loose	MVA tight
VBF signal	2.6	3.5		3.96	3.22
ggF	1.35	1.05		2.59	0.72
Fitted background	34.8	10.6		40.1	6.7
VBF purity	65.6	76.6		60.0	81.6
VBF significance	0.43	0.98		0.60	1.11
Combined significance	gnificance 1.07			1.26	
	MVA lo	ose	Ν	NVA tight	
VBF signal	0.62	29		0.296	
ggF	0.35	9	0.069		
fitted background	33.03	35		1.343	
VBF purity	0.64	7	0.814		
VBF significance	0.32	6		0.565	
Combined significance	ce 0.652				
	1 5			0.740	
V DF SIgliai	1.5	12		0.740	,
ggF	0.898			0.173	
fitted background	82.588			3.380	
VBF purity	0.6	647		0.814	
VBF significance	0.5	16	0.900)
	EventsVBF signalggFFitted backgroundVBF purityVBF significanceCombined significanceCombined significanceggFfitted backgroundVBF purityVBF significanceCombined significanceVBF significanceCombined significanceVBF significanceVBF significanceVBF significanceVBF significanceVBF significanceVBF significanceVBF significanceVBF signalggFfitted backgroundVBF purityVBF purityVBF significance	EventsCut-based looseVBF signal2.6ggF1.35Fitted background34.8VBF purity65.6VBF significance0.43Combined significance1.0VBF signal0.629ggF0.359fitted background33.03VBF purity0.647VBF significance0.320Combined significance0.320ggF0.320fitted background33.03VBF purity0.647VBF significance0.320Combined significance0.320VBF significance0.320VBF significance0.320VBF significance0.320VBF significance0.320VBF significance0.320VBF significance0.320VBF significance0.50VBF purity0.64VBF purity0.64VBF purity0.64VBF purity0.64VBF significance0.54	EventsCut-based looseCut-based tiVBF signal2.63.5ggF1.351.05Fitted background34.810.6VBF purity65.676.6VBF significance0.430.98Combined significance1.07MVA looseVBF signal0.629ggF0.359fitted background33.035VBF purity0.647VBF significance0.326Combined significance0.655VBF significance0.655VBF significance0.647VBF significance0.647VBF signal1.572ggF0.898fitted background82.588VBF purity0.647VBF significance0.516	Events Cut-based loose Cut-based tight N VBF signal 2.6 3.5 ggF 1.35 1.05 Fitted background 34.8 10.6 0.43 0.98 0.98 Combined significance 0.43 0.98 0.629 0.629 0.629 0.359 0.359 0.647 0.647 0.647 0.647 0.652 0.652 0.652 0.652 0.652 0.652 0.647 0.647 0.647 0.647 0.647 0.647 0.647 0.652 0.652 0.652 0.652 0.652 0.652 0.652 0.647 0.516 0.516 0.516 0.516 0.516 0.516 0.516 0.516 0.516 0.516 0.516 0.516 <td< th=""><th>Events Cut-based loose Cut-based tight MVA loose VBF signal 2.6 3.5 3.96 ggF 1.35 1.05 2.59 Fitted background 34.8 10.6 40.1 VBF purity 65.6 76.6 60.0 VBF significance 0.43 0.98 0.60 Combined significance 1.07 1.2 MVA loose MVA tight VBF signal 0.629 0.296 ggF 0.359 0.069 fitted background 33.035 1.343 VBF signal 0.647 0.814 VBF purity 0.647 0.652 VBF signal 1.572 0.740 ggF 0.898 0.173 fitted background 82.588 3.380 VBF significance 0.647 0.814 VBF purity 0.647 0.814 VBF purity 0.647 0.814 VBF purity 0.647 0.814 VBF purity</th></td<>	Events Cut-based loose Cut-based tight MVA loose VBF signal 2.6 3.5 3.96 ggF 1.35 1.05 2.59 Fitted background 34.8 10.6 40.1 VBF purity 65.6 76.6 60.0 VBF significance 0.43 0.98 0.60 Combined significance 1.07 1.2 MVA loose MVA tight VBF signal 0.629 0.296 ggF 0.359 0.069 fitted background 33.035 1.343 VBF signal 0.647 0.814 VBF purity 0.647 0.652 VBF signal 1.572 0.740 ggF 0.898 0.173 fitted background 82.588 3.380 VBF significance 0.647 0.814 VBF purity 0.647 0.814 VBF purity 0.647 0.814 VBF purity 0.647 0.814 VBF purity

1.030

variable modeling validation

- make sure our background variable modeling (Sherpa + RevIso&RevID) is consistent with real background
- plot variables of samples failing BDT tight/loose selection
- 85 pb⁻¹ data
 - 2jets : 179 events
 - VBF preselection : 80 events
 - BDT : no evevts in tight ,4 events in loose

other issues

• I find a very stupid mistake.....

$$\sigma_{VBF} = \sqrt{2 \times (N_{VBF} + N_{ggF} + N_{Background}) \times ln \left(1 + \frac{N_{VBF}}{N_{ggF} + N_{Background}}\right) - N_{VBF}}$$

- this formula is copied from ATL-COM-PHYS-2013-076
- but it is wrong.....the right one should be

$$\sigma_{VBF} = \sqrt{2 \times ((N_{VBF} + N_{ggF} + N_{Background}) \times \ln(1 + \frac{N_{VBF}}{N_{ggF} + N_{Background}}) - N_{VBF})}$$

- which is consistent with Jin's code
- so the cut-base number counting result showed last week should be wrong ,the correct one is in next page

significance ---number counting

• signal region: $m_{\gamma\gamma}$ [121,131]GeV

	tight	weighted	loose	weighted	all	weighted
ggF	3990	1.022	10804	2.767	14794	3.789
VBF	45411	1.937	66780	2.849	112194	4.786
Sherpa	141	12.98	667	61.40	808	74.37
Rev	14	1.208	55	4.746	69	5.954

$$\sigma_{VBF} = \sqrt{2 \times ((N_{VBF} + N_{ggF} + N_{Background}) \times \ln(1 + \frac{N_{VBF}}{N_{ggF} + N_{Background}}) - N_{VBF})}$$

	tight	loose	all
sigma	0.486648	0.340871	0.5945

compatible with throwing toys!

to do list

- MVA configuration optimization
- 25ns data
 - another ~85pb⁻¹
 - -276262-276954

formula derivation--copy from Cowan

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Distribution of q_0 in large-sample limit

Assuming approximations valid in the large sample (asymptotic) limit, we can write down the full distribution of q_0 as

$$f(q_0|\mu') = \left(1 - \Phi\left(\frac{\mu'}{\sigma}\right)\right)\delta(q_0) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_0}}\exp\left[-\frac{1}{2}\left(\sqrt{q_0} - \frac{\mu'}{\sigma}\right)^2\right]$$

The special case $\mu' = 0$ is a "half chi-square" distribution:

$$f(q_0|0) = \frac{1}{2}\delta(q_0) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_0}}e^{-q_0/2}$$

In large sample limit, $f(q_0|0)$ independent of nuisance parameters; $f(q_0|\mu')$ depends on nuisance parameters through σ .

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Cumulative distribution of q_0 , significance

From the pdf, the cumulative distribution of q_0 is found to be

$$F(q_0|\mu') = \Phi\left(\sqrt{q_0} - \frac{\mu'}{\sigma}\right)$$

The special case $\mu' = 0$ is

$$F(q_0|0) = \Phi\left(\sqrt{q_0}\right)$$

The *p*-value of the $\mu = 0$ hypothesis is

$$p_0 = 1 - F(q_0|0)$$

Therefore the discovery significance Z is simply

$$Z = \Phi^{-1}(1 - p_0) = \sqrt{q_0}$$

 s/\sqrt{b} for expected discovery significance For large s + b, $n \to x \sim \text{Gaussian}(\mu, \sigma)$, $\mu = s + b$, $\sigma = \sqrt{(s + b)}$. For observed value x_{obs} , *p*-value of s = 0 is $\text{Prob}(x > x_{\text{obs}} | s = 0)$,:

$$p_0 = 1 - \Phi\left(\frac{x_{\rm obs} - b}{\sqrt{b}}\right)$$

Significance for rejecting s = 0 is therefore

$$Z_0 = \Phi^{-1}(1 - p_0) = \frac{x_{\text{obs}} - b}{\sqrt{b}}$$

Expected (median) significance assuming signal rate s is

$$median[Z_0|s+b] = \frac{s}{\sqrt{b}}$$

Better approximation for significance Poisson likelihood for parameter *s* is

$$L(s) = \frac{(s+b)^n}{n!}e^{-(s+b)}$$

To test for discovery use profile likelihood ratio:

$$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{s} \ge 0 ,\\ 0 & \hat{s} < 0 . \end{cases} \qquad \lambda(s) = \frac{L(s, \hat{\hat{\theta}}(s))}{L(\hat{s}, \hat{\theta})}$$

So the likelihood ratio statistic for testing s = 0 is

$$q_0 = -2\ln\frac{L(0)}{L(\hat{s})} = 2\left(n\ln\frac{n}{b} + b - n\right) \quad \text{for } n > b, \text{ 0 otherwise}$$

G. Cowan

iSTEP 2014, Beijing / Statistics for Particle Physics / Lecture 3

31

Approximate Poisson significance (continued)

For sufficiently large s + b, (use Wilks' theorem),

$$Z = \sqrt{2\left(n\ln\frac{n}{b} + b - n\right)} \quad \text{for } n > b \text{ and } Z = 0 \text{ otherwise.}$$

To find median[*Z*|*s*], let $n \rightarrow s + b$ (i.e., the Asimov data set):

$$Z_{\rm A} = \sqrt{2\left((s+b)\ln\left(1+\frac{s}{b}\right) - s\right)}$$

This reduces to s/\sqrt{b} for s << b.

comparison

 $n \sim \text{Poisson}(s+b)$, median significance, assuming *s*, of the hypothesis s = 0

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727

"Exact" values from MC, jumps due to discrete data.

Asimov $\sqrt{q_{0,A}}$ good approx. for broad range of *s*, *b*.

 s/\sqrt{b} only good for $s \ll b$.