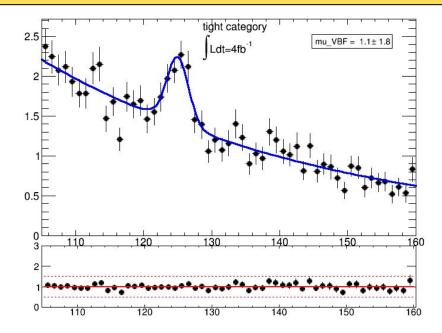
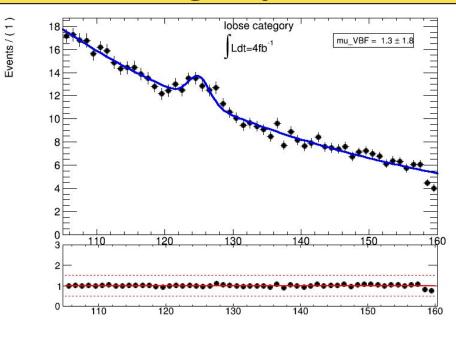

13TeV VBF H->γγ Analysis

Yu Zhang 11.02

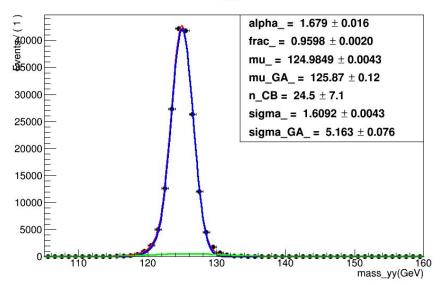
introduction

cut-based optimization


- Selection:
 - tight:m_{ii}>500GeV, $\Delta\eta_{ii}$ >3.9, $\Delta\Phi_{\gamma\gamma,ii}$ >3, $\Delta R_{\gamma,i}$ ^{min}>1.4, η *<2.4 loose:m_{ii}>310GeV, $\Delta \eta_{ii}$ >2.5, $\Delta \Phi_{\gamma\gamma,ii}$ >2.7
- run1tight:m_{ii}>520GeV, $\Delta\eta_{ii}$ >2.8, $\Delta\Phi_{\gamma\gamma,ii}$ >2.6, $\Delta R_{\gamma,i}$ ^{min}>2, η^* <2.4 loose:m_{ii}>400GeV, $\Delta\eta_{ii}$ >2.8, $\Delta\Phi_{\gamma\gamma,ii}$ >2.6


comparison

	with VBF preselection		without VBF preselection	
	cut-based tight	cut-based loose	cut-based tight	cut-based loose
VBF	2.22	2.57	2.24	3.21
ggF	0.83	3.51	0.89	4.91
bkg	8.06	74.74	8.25	111.58
VBF purity	0.73	0.42	0.72	0.40
significance	0.72	0.29	0.71	0.30
combined	0.78		0.77	


- with VBF preselection
 - $tight:m_{jj} > 500 GeV, \Delta \eta_{jj} > 3.9, \Delta \Phi_{\gamma\gamma,jj} > 3, \Delta R_{\gamma,j} ^{min} > 1.4, \eta^* < 2.4$
 - loose:m_{jj}>310GeV, $\Delta \eta_{jj}$ >2.5, $\Delta \Phi_{\gamma\gamma,jj}$ >2.7
- without VBF preselection
 - tight:m_{jj}>600GeV, $\Delta\eta_{jj}$ >1.7, $\Delta\Phi_{\gamma\gamma,jj}$ >3, $\Delta R_{\gamma,j}$ ^{min}>1.8, η *<2.4
 - loose:m_{jj}>300GeV, $\Delta \eta_{jj}$ >1.4, $\Delta \Phi_{\gamma\gamma,jj}$ >2.5

fit with cut-based category

new variables

related systems

	γ1	γ2	γ1γ2
j1	γ1 j1	γ2 j1	γ1 γ2 j1
j2	γ1 j2	γ2 j2	γ1 γ2 j2
j1 j2	γ1 j1 j2	γ2 j1 j2	γ1 γ2 j1 j2

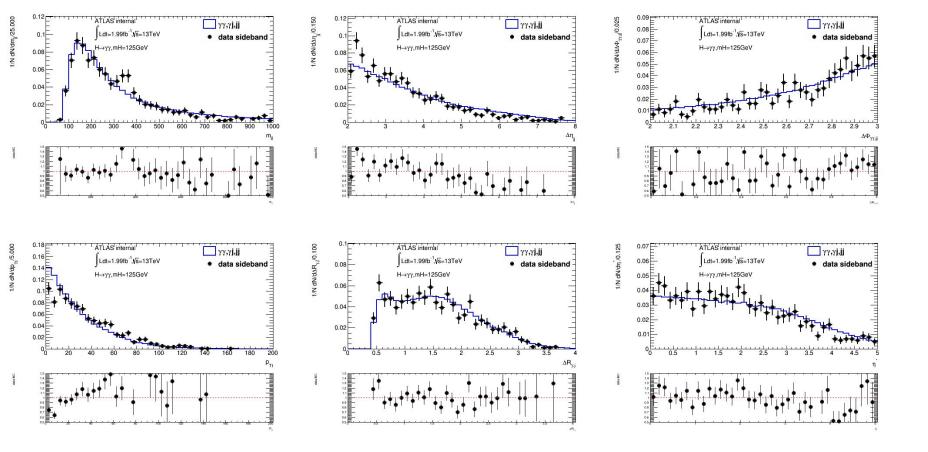
- related variables : system pT,sum of pT,sum of P , mass,Eta, Δ pT, Δ Φ, Δ R,pT/P of system,E,E/M
- addtional variables: $pT_{\gamma 1}/m_{\gamma \gamma}$, $pT_{\gamma 2}/m_{\gamma \gamma}$, $pT_{\gamma \gamma}/m_{\gamma \gamma}$, $\eta_{j1}*\eta_{j2}$
- variable selection
 - loop all variables ,rank them by separation power
 - keep the most powerful one if variables are correlated
 - remove variables that correlates to $m\gamma\gamma$
 - find the best combination

MVA optimization strategy

- People ask me why ggF is not included in MVA training
- strategy 1(now)
 - train with $\gamma\gamma$, γ j,jj and VBF samples and calculate BDT responce
 - scan BDT cut and obtain the work point with highest significance
- strategy 2
 - train with $\gamma\gamma$, γ j,jj and VBF samples and calculate diphoton BDT
 - train with ggF and VBF samples and calculate ggF BDT
 - do optimization with a 2D scan of diphoton and ggF BDT
- strategy 3
 - train with $\gamma\gamma,\gamma j,jj$ and VBF samples and calculate diphoton BDT
 - train with ggF and VBF samples and calculate ggF BDT
 - give a final BDT with diphoton and ggF BDT and some other variables
- maybe need to test all of them ,not sure

bkg decoposition

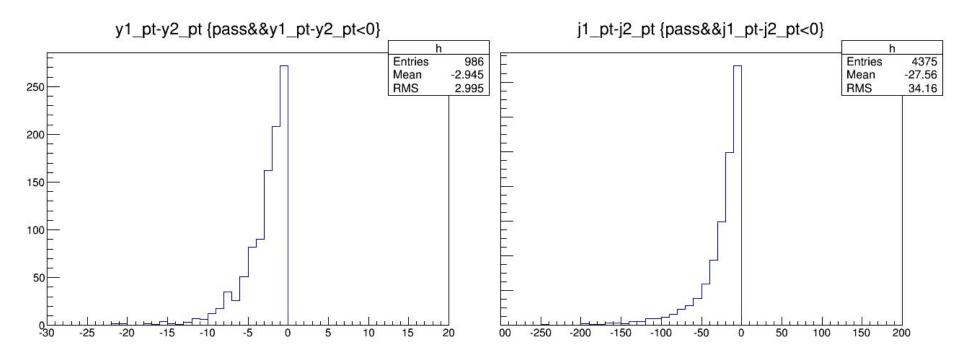
- From Jim Lacey
- our modeling
 - $-\gamma$ j:one photon fails tight ID in RevID&RevIso
 - j:both photons fail tight ID in RevID&RevIso
- take Sherpa as γγ bkg(contributes 80%)
- take RevID&RevIso as γj and jj(contributes 20%)


13 TeV background decomposition

		YY [%]	γ+jet [%]	jet+jet [%]
,	inclusive	77±3	20±2	3±1
	N _{jets} = 0	75±2	22±2	3±1
	N _{jets} = 1	81±2	18±2	2±1
	N _{jets} = 2	85±2	14±2	1±1
	$N_{jets} \ge 3$	85±2	14±2	1±1

for now ,PID is not saved in my private Ntuple!

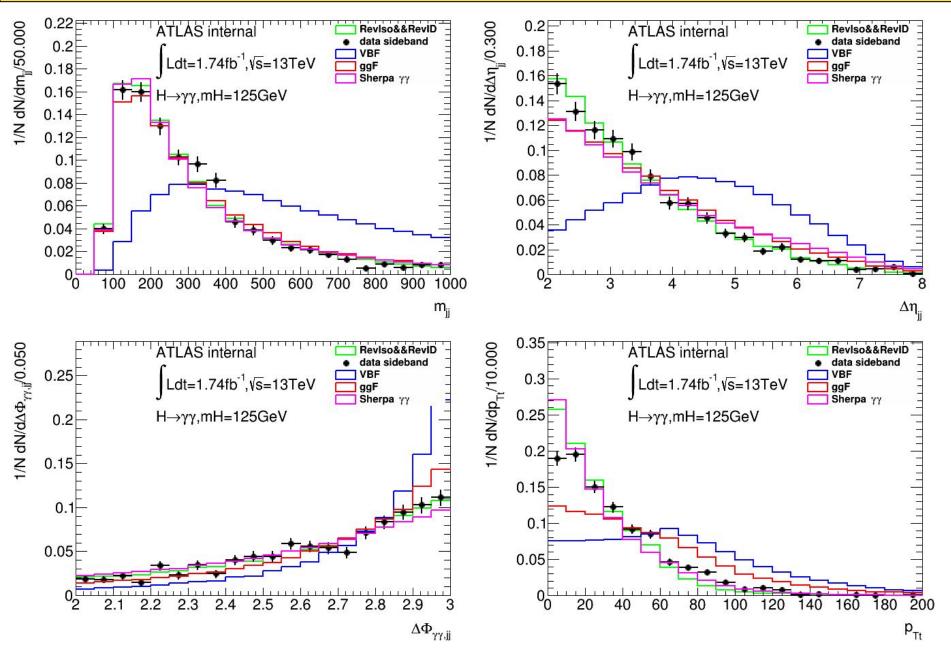
		YY [%]	γ+jet [%]	jet+jet [%]
	inclusive	78±3	20±3	3±1
13 TeV	N _{jets} = 0	74±4	23±4	3±1
13 lev	N _{jets} = 1	81±3	17±2	3±1
	N _{jets} = 2	80±3	18±3	2±1
	N _{jets} ≥ 3	80±4	19±5	1±1

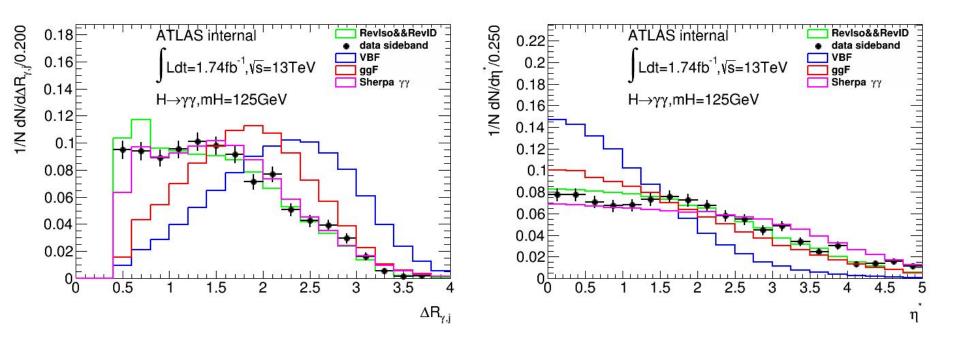

8 TeV

- In plot of m_{jj} , $\Delta\eta_{jj}, p_{Tt}, data and mc don't match in some bins$

possible bugs.....

- y1_pt<y2_pt in some events ,986/16144
- y1_pt:HGamPhotonsAuxDyn.pt[0]
- y2_pt:HGamPhotonsAuxDyn.pt[1]
- photonHandler->getCorrectedContainer()
- shallowContainer.sort(comparePt);
- could anyone do crosscheck?

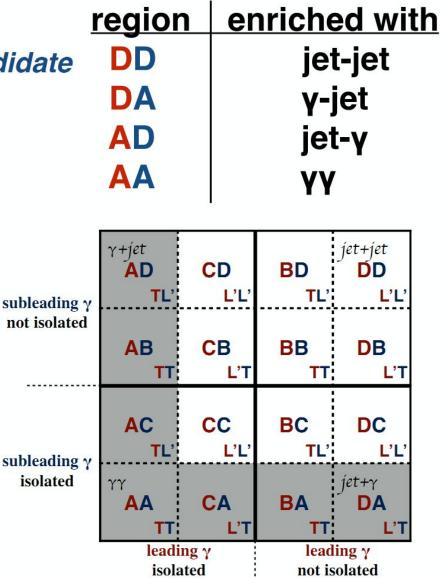



to do list

• check new variables

• loop MVA configuration and variable combination

back up



2x2D sideband method

red: leading p _T photon candidate
blue: sub-leading pT photon candidate
A: Tight and Isolated (TI)
B: Tight and not Isolated (TN)
C: not Tight and Isolated (nTI)
D: not Tight and not Isolated (nTN)

- truncate information into the 7 shaded regions by assuming:
 - fake rates in γ-jet and jet-jet events are equal
 - neglect possible jet-jet or photon-photon correlations

