13TeV VBF H->γγ Analysis

Yu Zhang 11.16

introduction

- data
 - total:3.34/fb in final GRL
 - begin to produce MxAOD by myself
- cut-based
 - fix the bug
- MVA
 - correlation
- document

cut-based

- bug
 - train with events failing tight selection
 - tight:mjj>500GeV, $\Delta\eta$ jj>3.9, $\Delta\Phi\gamma\gamma$,jj>3, $\Delta R^{min}_{\gamma,j}$ >1.4, η *>2.4
 - wrong:m_{jj}<500GeV, $\Delta\eta_{jj}$ <3.9, $\Delta\Phi_{\gamma\gamma,jj}$ <3, $\Delta R^{min}_{\gamma,j}$ <1.4, η^* <2.4
 - correct:!(mjj>500GeV,∆ηjj>3.9,∆Φγγ,jj>3,∆Rminγ,j>1.4,η
 *>2.4)
 - loose:mjj>350GeV, $\Delta\eta$ jj>2.5, $\Delta\Phi\gamma\gamma$,jj>2.7

comparison

	cut-based tight	cut-based loose	MVA tight	MVA loose
VBF	2.22	2.32	2.31	2.29
ggF	0.83	2.94	0.54	2.12
background	8.06	59.73	3.37	23.17
VBF purity	0.73	0.44	0.77	0.52
significance	0.72	0.29	0.84	0.45
combined significance	0.78		0.95	

21% improvement

correlation

correlation

document

7

- have submitted
- wait for feedback
- implement some other checks and sections

	No	ovember 15, 2015 – 14 : 15 DRAFT	2
8	С	ontents	
9	1	Introduction	3
10	2	Data and Monte Carlo samples	4
11	3	Object definitions	5
12	4	Event selection	6
13	5	VBF category optimization	7
14		5.1 Variable selection	7
15		5.2 Optimizing the combination of input variables	7
16		5.3 Cut-based analysis	10
17		5.4 Multivariate analysis	10
18		5.5 Validation of the BDT	11
19	6	Signal and background modelling	14
20	7	Systematics uncertainties	15
21	8	Results	16

November 15, 2015 - 14:15

DRAFT

26 5 VBF category optimization

27 The VBF process has an unique signature, with two forward jets and little QCD radiation in the central 28 region from hard interaction.

The main non-resonant background in VBF $H \rightarrow \gamma \gamma$ is from Standard Model QCD process: $\gamma \gamma$ pairs in association with at least two jets, single γ events with at least three jets of which one jet fakes a photon, and multi-jet events where two jets fake two photons. Another important background to VBF Higgs $\gamma \gamma$ is resonant ggF Higgs $\gamma \gamma$ in association with at least two jets. Here Sherpa samples of $\gamma \gamma$ plus jets are used to simulate $\gamma \gamma$ plus jets background. γ +jet and jet-jet background are estimated by reverse identification(RevID) and reverse isolation.

36 5.1 Variable selection

53

27 Compared with background events, di-jet of VBF signal is in forward region with hight transverse mo-

mentum and large rapidity separation. The decay products of Higgs lie in the central-rapidity region. Some

39 discriminating variables are given from this unique angle correlation. Following variables are used in

⁴⁰ Run1 analysis in table 1 and the distribution is showed in figure 1 after VBF preselection, which requires ⁴¹ at least two jets and $\Delta \eta_{11} > 2$, $\eta^{Zeppenfeld} < 5$.

Variables	bles Definition		
mjj	n _{jj} Invariant mass of dijet		
$\Delta \eta_{jj}$	Pseudo-rapidity separation of dijet		
$\Delta \Phi_{\gamma\gamma,JJ}$	$\Delta \Phi_{\gamma r,jj}$ Azimuthal angle between diphoton and dijet system p_{Tt} Diphoton p_T projected perpendicular to the diphoton thrust axis $\Delta R_{\gamma,l}^{min}$ Minimum ΔR between either leadingsubleading photon and leadingsubleading j		
PTI			
$\Delta R_{\gamma,1}^{mln}$			
η ^{Zeppenfeld}			

Table 1: variables and their definitions

42 5.2 Optimizing the combination of input variables

Some other variables are introduced to discriminate VBF signal from ggF background and non-resonant background. The relevant system is listed in table 2. Some variables of each system is concerned , such as p_T , scalar sum of p_T , scalar sum of momentum, invariant mass, pseudo-rapidity, Δp_T , $\Delta \Phi$, ΔR , p_T/P , E, E/M, $p_T\gamma_1/m_{\gamma\gamma}$, $p_T\gamma_2$, $p_T\gamma_\gamma$ are also included

A method is introduced for variables selection. Fisrt, all of the variables are put in the training and ranked by their separation power, defined by equation 1. Second , if some variables are highly correlated, only the one with highest separation power are kept. Then , variables highly correlated to $m_{\gamma\gamma}$ are removed in case that variables will change the distribution of $m_{\gamma\gamma}$. Finally, check the systematics and find the best combination of variables.

Some powerful variables and its separation power and correlation are listed in table 3. The distribution is shown in figure 2

$$\langle S^2 \rangle = \int \frac{(\hat{y}_i(y) - \hat{y}_b(y))^2}{\hat{y}_i(y) + \hat{y}_b(y)} dy$$
 (1)

derivation

- help to submit jobs and update twiki
- HIGG1D1 skimming
 - γ:goodOQ,loose,pT>20GeV,|η|<2.47,remov crack region
 - e:loose,pT>20GeV,|η|<2.47,remov crack region
 - mu:pT>20GeV,|η|<2.7
 - keep events with $\gamma\gamma$, ee, 1e1 γ , 1mu1 γ
- our WW $\gamma\gamma$ analysis can start from DAOD HIGG1D1

to do list

 check the systematics of different variable combination