13 TeV VBF H->γγ Analysis

• Summary of the document status

Yu Zhang 11.23

looking forward

> Time is passing...

- Aiming for analysis of VBF+Uncategorised for Moriond
- Need to think about next steps and time plan
- Define some deadlines/timescales and to-do list
- Assign high-priority tasks

eta_Zeppenfeld or Dy_yy_jj

- eta_Zeppenfeld= $|\eta_{\gamma\gamma}-0.5^*(\eta_{j1}+\eta_{j2})|$
 - the meaning of $\eta_{\gamma\gamma}$ is not clear, far away from rapidity for massive diphoton system
 - rapidity of diphoton system is recommended
- Dy_yy_jj= $|Y_{\gamma\gamma}-Y_{jj}|$
 - 0.5*(η_{j1} + η_{j2}) is similar with Yjj
 - physics meaning is clear

jet eta and rapidity

- Sherpa DP +up to 3jets and VBF samples are used
- as expected, (j1+j2).Rapidity() is close (j1.Eta()+j2.Eta()/2
- because dijet system has large invariant mass,(j1+j2).Rapidity is not close to (j1+j2).Eta()
- (j1+j2).Eta() shape is resonable?

diphoton rapidity

- in VBF sample,(y1+y2).Eta() is more wider
- in Sherpa sample,(y1+y2).Eta() has two peaks,totally different with (y1+y2).Rapidity()

diphoton rapidity

- left is (y1+y2).Eta(),right is (y1+y2).Rapidity()
- rapidity of higgs is much more narrow

6

eta_Zeppenfeld and Dy_yy_jj

- separation power:eta_Zeppenfeld, 0.127
 Dy_yy_jj, 0.079
- considering the separation power, two choices
 - still use eta_Zeppenfeld due to relative high separation power compared with Dy_yy_jj(even the meaning of latter one is clear)
 - remove eta_Zeppenfeld due to relative low separation power compared with some other variables
- anyway,need to find an optimal combination in next step

discriminating variables

BDT response

- comparison between 3 strategies
- "including ggF" doesn't make great difference
- "8 variables" has more separation power

correlation

- sumPtγγjj,pTγγ/mγγ and pTt are highly correlated
- separation power : pTt 0.235
- large QCD uncertainty with sumPtγγjj
- systematic is under investigation
- in principle ,just keep $pT\gamma\gamma/m\gamma\gamma$

10

comparison

	6 vars,not include ggF		6 vars,include ggF		8 vars,not include ggF	
VBF	1.85	2.47	1.81	2.40	1.84	2.21
ggF	0.73	2.47	0.70	2.32	0.82	2.12
background	3.06	26.21	2.90	24.01	2.21	16.47
VBF purity	0.72	0.50	0.72	0.51	0.69	0.51
significance	0.88	0.45	0.89	0.46	0.97	0.50
combined significance	0.99		1.00		1.09	

to do list

- variable combination
- MVA configuration
- systematic

