ATLAS Data Acquisition

Jinlong Zhang Argonne National Laboratory on behalf of the ATLAS Collaboration

IEEE NPSS Real Time Conference 2009 Beijing, 10-15 May 2009

Outline

- *Trigger/DAQ (TDAQ) system overview
 - *Trigger status by C. Padilla and F. Winklmeier
- *Dataflow system
- *Online Configuration and Control
- * Monitoring
- *Integration, commissioning and early operation
 *Summary

Trigger/DAQ (TDAQ) System Overview

ATLAS Detector

pp collisions @ 14 TeV and L=10³⁴ cm⁻²s⁻¹

ATLAS TDAQ System

ATLAS TDAQ Strategy

Dataflow Architecture

Hardware Installation Status

Component	Current	Final
RoIB	1	1
L2SV	2	12
L2PU node	See XPU	~500
DFM	12	12
SFI	63	63
SFO	5	5
EF node	See XPU	~1800
ROS	153	153
XPU	~850	~850

Region of Interest Builder (RoIB)

- Assembling Regions of Interest (RoI) information from LVL1 into complete data structure and delivering to L2SV
- A 9U VMEbus system with SBC, clock board, input boards and builder boards

Readout System (ROS)

Level 2 (LVL2)

- L2SV distributing RoI (LVL1 results) to L2PUs
- L2PU running LVL2 trigger algorithms seeded by RoI
- L2RH providing LVL2 results to EB process
 L2SV/L2RH

Filar

PCI interface with 4 custom link inputs

RunCtrlStatistics.L2SV-SUM.IntervalEventRate

- CPU: AMD Opteron 252 2.6 GHz
- RAM: 2 GB
- Network: 1 of 2 GbE for data collection
- 1 Filar card in L2SV

- 31 nodes/rack
- CPU: 2 × Intel quad-core 2.50 GHz
- RAM: 2 GB / core
- Network: 1 of 2 GbE for data collection

Event Builder (EB)

- DFM assigning events to SFIs and sending clear messages to ROSs
- \cdot SFI requesting data from ROSs and building the full event

Event Filter (EF)

- Same hardware as L2PU
- Event filter algorithms accessing full event

- 27 EF racks, 2 GbE links/rack, 30*8=240 processing units/rack
- Limits referring network limit
- \cdot EB/EF performance scaling with the number of racks

Data storage

- Data (passed EF) written into files on SFO and asynchronously transferred to the mass storage at Tier-0
- SFO reading/writing in three different filesystems to maximize the throughput
- SFO providing sustained I/O rate of 550MB/s (target 300MB/s) with peak rate >700 MB/s

Online Configuration and Control

Online System

Online Configuration

- \cdot Providing configurations for TDAQ and detector descriptions
- Accessed by ~25K online processes
- Archived for offline access and analysis

Persistent object manager (OKS)

- Object data model
- XML files as persistent storage
- GUI tools for changes
- Remote access (CORBA based)
- Abstract API layer with plugins

Online Control

- Coordinating for applications (~25K) in data-taking session
- Software operating over dedicated network

Control software facilities

- Process manager
- Run Control
- Diagnostics & verification
- Error recovery system
- · IGUI

Online System Evolvement

- Audit
 - Formatting, archiving and analyzing messages
- Security
 - Access control and role assignment
- Fault Tolerance
 - Problematic components handling and recovery
- Scalability
 - Re-implementing or optimizing components
- Operability
 - Shifter friendly interfaces and tools

Online Monitoring

- Complex and diverse requirements on data quality and system performance monitoring
 - Analyzing event content
 - Analyzing operational conditions of hardware and software for TDAQ and detector
 - Software framework and tools handling massive information
 - Online monitoring services
 - Information Service (IS)
 - Online Histogramming Service (OH)
 - Event Monitoring Service (EMON)
 -
 - Monitoring facilities
 - Gatherer
 - · GNAM
 -
 - Monitoring presenters
 - Online Histogram Presenter (OHP)
 - Trigger Presenter (TriP)
 - Operational Monitoring Display (OMD)
 -
 - Histogram archiving
 - ...

Network traffic level Network traffic level event level -40 MB/s at complete event level -220 MB/s at complete event level

Monitoring software components

Trigger Presenter (TriP)

DQMF (Display)

- Producing DQ status by automatic checking histograms with predefined algorithms
- Storing DQ status in condition database
- Showing overall DQ status for subsystems
- Showing DQ status in geographical view of detector components
- Showing detailed monitoring information

Integration, Commissioning and Early Operation

Strategy

- Growing the TDAQ system
 - Exercising on the testbed continuously for years
 - Installing and testing the final system incrementally
- Commissioning the TDAQ system
 - Emulating data source
 - Generating events by subsystem internally
 - Preloading simulated events
 - Replaying cosmic events taken with detectors
 - Performing technical runs
 - Deploying subsystem functionalities
 - Improving subsystem performance
 - Performing stress tests
 - Accumulating operation experience
- Integration with detectors
 - Continuous support for detector installation and commissioning
 - Invaluable feedback on the functionality and operational aspects of the system

1st Full Chain Integration

- Ran the full trigger chain with RPC+ LVL1 (muon) + RoIB + LVL2 + EB
- Triggered cosmic ray at 30 Hz (RPC setting) in LVL1 and ran pass-through mode in LVL2 to record all events
- Selected downward muons with LVL2 algorithm
- Stored accepted events after event building

Integration and Commissioning

- Regularly used for cosmic data taking and integration runs with detectors
 - Improvement on functionality, stability and reliability
- Continuous cosmic data taking (Aug 1 Oct 31 2008 except beam time)
 - ~ 550 million events, ~ 1 TB, > 600 k files

TDAQ at Low Luminosity

- LHC startup luminosity expected to be ~ 10^{31} cm⁻² s⁻¹ with less bunches
- ATLAS commissioning the trigger and detector systems, and studying the basic Standard Model physics signatures
- A trigger menu (10³¹ menu) deployed by applying low thresholds, loose selections and pass-through mode wherever possible
- The 10³¹ menu continuously exercised in the installed TDAQ infrastructure with simulated data (TDAQ technical run)
 - Full system with preloading simulated data into ROSs
 - Validation of all aspects including trigger algorithms

Beam on Sep 10th 2008

- LHC going step-by-step: stopping beam on collimators, re-aligning with centre, opening collimator, keeping going
 - Splash event from collimators for each beam shot
- ATLAS relying on small radius triggers with well defined cosmic timing (LVL1 calorimeter trigger and Minimum Bias Trigger Scintillator), starting timing in Beam Pickups (BPTX, the timing reference) rapidly to trigger on through-going beam

TDAQ for 1st Beam

- TDAQ system (was) ready for 1st beam
 - 130 ROSs, 4 L2SVs, 120 LVL2 nodes, 74 SFIs, 450 EF nodes, 5 SFOs
 - HLT running but no rejection

Summary

- The three-level ATLAS trigger architecture and highly distributed DAQ system have been deployed
- A large fraction of dataflow components has been installed and commissioned
- ✓ The online system has been implemented to meet the challenges
- ✓ The monitoring tools have been developed and are being widely used
- The TDAQ system is continuously being used for detector integration and commissioning
- ✓ The TDAQ system (was) ready for the 1st beam.
 We will have beam (again) in 2009

More Materials

Hardware Status

GROUPS	TOTAL	ONLINE	OFFLINE	Comments
Gateways WebServer	3	3	0	pc-tdq-xpu-0125,pc-tdq-xpu- 0126,pc-tdq-xpu-0127,pc-tdq-xpu- 0128 reserved by sysadmins for
CFS ACR	3 20	3 19	0 1	testing nagios/mysql configurations.
■ SCR ■ TDQ	29 1291	24 1250	5 41	pc-tdq-xpu-0129 reserved by sysadmins for testing active
LFS ONL MON	46 25 31	46 25 31 154	0 0 0	directory pc-tdq-xpu-0109 to pc-tdq-xpu- 0114;pc-tdq-xpu-0098,117,121 are reserved [Memory upgrade].
SFI	63 5	63 5	0	pc-tdq-mon-29, 30, 32 are reserved for NFS 4 performance tests.
DFM L2SV XPU PRESERIES	12 2 842	12 2 807 105	0 0 35 6	Refresh Interval: 3 minutes
■ SBC PUB	157 12	149 11	8 1	7:12:43 pm
DCS SWITCH OTHERS	19 108	18 104	1 4 2	Site Feed
TOTAL	1700	1637	63	Phone: 164851 Email: atlas-tdag-sysadmins

Network

- 2 x Force10 E600
 - Up to7 blades 630 GbE ports total 336 GbE ports @ line speed
- Control network
 - Run Control
 - Database
 - Monitoring sampler

- 2 x Force10 E1200
 - 6 blades × 4 optical 10GbE ports
 - 2 blades x48 copper GbE ports Force10 E600
 - Up to 14 blades 1260 GbE ports total
 - 672 GbE ports @ line speed
- Data network
 - LVL2 traffic
 - EB traffic

- - Up to 7 blades
 - 630 GbE ports total
 - 336 GbE ports @
 - line speed
- Data network
 - · To EF

DCS Architecture

DCS FSM Operator Interface

HLT Requirement

	LVL2	EF
	Full System	Full System
	Input 100 KHz ~500 nodes	Input 3.5 KHz ~1800 nodes
res	200 Hz per node	2 Hz per node
Rat	Current Hardware	Current Hardware
	8 L2PUs / node	8 PTs / node
	~40 ms/event per L2PU	~4 s/event per PT
	(Data Collection+Processing time)	
ize	~2% of data	Full Event
S		~1.5 MB
ta		
Da		

HLT and Offline Software

HLT Concept

- Algorithms are executed based on trigger chains
- Chains are activated based on result of previous level
- Each chain is divided in steps
- Each step executes an algorithm sequence (one or more algs)
- A step failed to produce an expected result ends the chain
- Any chain can pass the event

Region of Interest (RoI)

- LVL1 identifies Regions of Interest (RoI) defined by (n, φ)
- The average number of RoIs per event is ~1.6
- LVL2 performs selection with data along the RoI path (~2% of full detector)

