
The ATLAS High Level TriggerThe ATLAS High Level Trigger
Infrastructure, Performance and Future DevelopmentsInfrastructure, Performance and Future Developments

Frank Winklmeier (CERN)
on behalf of the ALTAS Collaboration

IEEE 2009 Real Time Conference
IHEP Beijing, 10-15 May 2009

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 2

The ATLAS Detector

Other talks related to ATLAS Trigger/DAQ
HLT-4, C. Padilla, Commissioning of the ATLAS High Level Trigger with Single-Beam and Cosmic Rays
TDA2-4, J. Zhang, Atlas DAQ and Controls
TDA3-2, C. Padilla, The ATLAS Trigger System
TDA4-6, D. della Volpe, The ATLAS DataFlow System: Present Implementation, Performance and Future Evolution

proton-proton collisions at 14 TeV with a bunch crossing rate of 40 MHz

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 3

ATLAS Trigger and DAQ System

CALO MUON

Read-Out System

Event Builder
~100 nodes

320
MB/s

L2PU
~500 nodes

EFPU
~1800 nodes

● Level-1
● Analyzes coarse granularity data from

CALO and MUON detectors
● Identifies Region of Interest (RoI) used

to seed Level-2

● Level-2 (L2)
● Partial event reconstruction in RoI
● Event fragments requested from Read-

Out System
● Algorithms optimized for fast rejection

running in L2 Processing Unit (L2PU)

● Event Filter (EF)
● Full event reconstruction seeded by L2
● Full event provided by Event Builder
● Offline-type algorithms running in EFPU

~ 1.6 MB / event

75kHz
L1 accept

~3kHz

L2 accept

~200Hz

EF accept

L2 ~ 40ms

EF ~ 4s

L1 ~ 2.5 µs

High Level Trigger

RoI

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 4

High Level Trigger Hardware
● Final system:

● 17 Level-2 racks
● 62 Event Filter racks
● 1 rack = 31 PCs (1U)
● → ~2300 HLT worker nodes
● 28 racks configurable as L2 or EF (XPU)
● 1 Local File Server (LFS) per rack

served by Central File Servers (CFS)
● Network booted

● Current system:
● 27 racks installed
● ~35% of final system
● 2 x 4-core Harpertown @ 2.5 GHz
● 2 GB Memory/core (16 GB / node)

● OS
● Running Scientific Linux 4 (soon 5)

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 5

High Level Trigger Software
● HLT is based on offline event processing framework (Athena/Gaudi)

● Component based software framework (co-developed with LHCb)
● Abstract interfaces allow for transparent replacement of components
● Python interface for job configuration
● Whenever possible core-offline components are reused in HLT
● Allows trigger algorithm development using offline environment and tools
● Hundreds of developers with O(1M) lines of code

 Online ← Integration ← OfflineOnline ← Integration ← Offline

Data Flow

L2PU / EFPU

HLT framework

Athena / Gaudi

HLT Core Software

Algorithms

athenaXT.py
athena.py

HLT framework
● Decoupling of DataFlow and HLT

software development
● Online emulator (athenaXT) allows

offline running of HLT software
● Facilitates testing and development

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 6

HLT Framework
● Provides special Athena services with “online backend”

● Job configuration (from DB vs. python)
● Messaging (interface to online messaging)
● Histogramming (publish to online system)

● Interface to online infrastructure
● Run and process control, state machine
● Online configurations DB

● Provide access to Readout configuration
● Access to online conditions

● Detector Mask
● Magnet configuration

● Event handling
● Assign stream tag information based on L2/EF decision
● Special handling of calibration events
● Forwarding of error conditions to other online applications

DataFlow

L2PU/EFPU

HLT framework athena Environment

Athena,
Algorithms

Athena,
Algorithms

Conditions DB

Online
Information

Service

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 7

Online/Offline software requirements
● HLT software requirements

● Often stricter and sometimes contradictory to offline software requirements

● Job initialization
● Initializations have to be done before the first event (otherwise danger of timeout)
● Developed tool based on valgrind to compare code execution profiles of 1st and Nth event

Offline Online (L2)

Initialization on-demand (lazy) before the 1st event

Job lifetime O(1k) events O(1M) events

Memory usage Total < 2GB + Leak < 10 bytes/event

 event #1 event #2
do_lookup_x 14795 89
CaloTowerStore::buildLookUp(CaloTowerContainer*, 2 0
CaloTowerContainer::getTowerIndices(double, doub 898243 0
TClassEdit::CleanType(char const*, int, char const**) 6381 0
P4EEtaPhiMBase::hlv() con 4844 4844
operator new(unsigned) 2080837 445405
LArRodBlockPhysicsV0::getNextEnergy(int&, int&, int& 194532 0
_int_free 1264564 348732
PoolSvc::testDictionary(std::string const&) const 2 0
ServiceManager::getService(std::string const&, IService*& 1489 351

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 8

Virtual memory

Resident memory

Performance monitoring
● Memory usage

● A 10kB per-event leak at L2 will grow to ~900MB in one hour (@ 25 Hz)
● Using public (valgrind, memprof) and custom leak checkers
● Monitor memory usage for every nightly build
● Need to make sure all code paths are executed → use ttbar or black-hole events

Memory usage of an EF job

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 9

Release building and validation
● AtlasHLT software project

● Software project depending on both the online and offline software projects
● Special patching project to allow for fast patching within O(hour)

● Release validation
● Functional and regression nightly tests
● Testing both algorithms and infrastructure using online emulators
● Running “localhost HLT partition”

AtlasHLT

online

AtlasP1HLT

offline

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 10

Operational Experience
● HLT framework successfully used since many years

● ATLAS test beam in 2004 and TDAQ commissioning runs
● In cosmic data taking and detector commissioning periods
● 1st beam on September 10th: configured in pass through mode
● More than 40 days of 24/7 cosmic data taking after “LHC incident”

216 millions events
453 TB data
400k files
several streams

(see the following talk)

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 11

Operational Experience
● High-rate tests

● Stress-test system with 1031 trigger menu and simulated data
● Use most of available machines for L2
● Timing for event processing is at specification

● 7 hour run
● L2 input ~ 60 kHz
 (80% of design rate)
● 2880 L2PU
 (70% of final system)

cronjobs

L2 input rate (Hz) vs. time

Mean time for rejected
events at L2 ~38ms

Time for rejected events at L2

Log-axis !

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 12

Is Mr. Moore still valid ?

HW threads
per socket

HLT Technical
Design Report

LHC data

Over the past decades Moore's doubling
of transistors was accompanied by a similar
increase in clock speed.

“Free lunch” for HEP application developers

HLT-TDR (2003) assumed 8GHz CPU

This era has ended!

Moore is still valid, but most of the N times
more transistors are packed into additional cores.

Not obvious that throughput will scale by
simply multiplying the number of applications.

We have to make sure our applications make
optimal use of the additional cores.

Bob Warfield [1]

Intel White Paper Platform 2015 [2]

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 13

Parallelism and Multi-Core CPUs
● Parallelizing HEP applications

● Exploit event-level parallelism
● Computer Scientists call this “embarrassingly parallel”
● Use multi-threading or multi-processing techniques

● Initial design of HLT applications
● L2: multi-threaded process (alternatively multiple single-threaded processes)
● EF: multiple processes
● Over the past years we gained experience with both multi-processing and multi-threading

● Boundary conditions
● Our applications are memory intensive (1-2 GB)
● Most of our very large code base has been developed in pre-multi-core era
● Changes have to be as transparent as possible
● Currently O(1 GBit/s) bandwidth available to worker nodes

EF EF EF EFL2 WT WT WT WT

Multi-threading Multi-processing

IO connections

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 14

Experience with Multi-Threading
● Event processing in multiple worker threads

● Use multiple worker threads per process each processing one event
● Code sharing
● Resource sharing (memory, sockets, ...)

● In reality...
It is very difficult to maintain a large code base thread-safe and
thread-efficient in an open developer community

● Requires careful tuning and expert knowledge
● Difficult and time consuming, limits code-reuse from offline projects
● Impact on turn-around times for patches, code improvements
● External code is beyond our control. (see below for an STL example)
● Multi-threading no longer used/supported for HLT Algorithms

Load

Config

Start

Stop

UnConfig

UnLoad

Worker Thread

Threads blocked due to
common memory pool in
STL containers

Multi-threading in L2PU

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 15

Experience with Multi-Processing
● Run one L2/EF application per core

● Make use of the inherent event-level parallelism
● No code changes needed
● Independent processing units
● Observed good scaling with number of cores →

● Problem: resource sharing
● Resource requirements scale with number of applications

● Memory size
● OS resources: file descriptors, network sockets, ...
● number of controlled applications
● number of network connections to readout system
● transfer of same configuration data N times to the same machine

● Naive process multiplication will not scale into many-core era

Trigger rate as a function of # applications/node
(Hz)

0
50

100
150
200
250
300
350

0 2 4 6 8 10 12 14 16 18

processes

ra
te

 [H
z]

Trigger rate vs. #applications/node
on a 8-core machine

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 16

Resource sharing
● Typical HEP application

● Large amount of constant configuration and conditions data of O(100 MB)
● Small event data of O(1 MB)
● Common problem for offline reconstruction and HLT

● Possible solutions
● Multi-threading (see our experience)
● Shared memory segments for constant data

● Challenge is to implement this transparently for user-code
● Exploit copy-on-write via fork (see [3] S. Binet, CHEP 2009)

● Little code changes but difficult to implement for online (sockets, process control, etc.)
● Unshared data never becomes shared again

● Use special kernel module (KSM by RedHat)
● Automatically identifies identical memory pages between processes
● Identical pages are merged and marked as “shared”
● Initial tests have been done within HLT and offline, but not conclusive yet

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 17

Summary

● The HLT framework based on the athena offline framework has been
successfully used in many different data taking periods and provides
the required performance

● The reuse of offline software components allows to benefit from a big
developer community and a large code basis.

● Constant performance monitoring is absolutely necessary

● The optimal use of multi-core processors requires further framework
enhancements to reduce resource utilization. Many issues are shared
with offline and can profit from common solutions.

Backup SlidesBackup Slides

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 19

ATLAS Trigger/DAQ in Detail

A. Di Mattia, CHEP 2009

Frank Winklmeier • The ATLAS HLT Infrastructure • 12 May 09 20

Appendix
● References

● [1] Bob Warfield, http://smoothspan.wordpress.com/2007/09/06/a-picture-of-the-multicore-crisis/
● [2] Intel® White Paper Platform 2015: Intel® Processor and Platform Evolution for the Next Decade
● [3] S. Binet, Harnessing multicores: strategies and implementations in ATLAS, CHEP 2009

http://smoothspan.wordpress.com/2007/09/06/a-picture-of-the-multicore-crisis/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

