

Compact SiPM based Detector Module for Time-of-Flight PET/MR

M. Ritzert¹, V. Mlotok¹, I. Perić¹, P. Fischer¹, C. Piemonte², N. Zorzi², T. Solf³, V. Schulz³, A. Thon³

¹Institute for Computer Engineering Heidelberg University, Mannheim, Germany

²Fondazione Bruno Kessler Trento, Italy

³Philips Research Europe Aachen, Germany

Realtime Conference, Beijing, 2009

Project Overview

- Project funded by the European Union in FP7.
- Develop a compact PET detector module for use in a simultaneous ToF PET/MR detector, scalable to a whole-body scanner.
- Develop novel reconstruction algorithms to make good use of the available information (MR based attenuation and motion correction).

Requirements for the PET Detector

- MR compatible design, i.e. no magnetic components, especially no PMTs, inside the magnet, no wire loops.
- ► Fit inside the little available space inside the MR scanner.
 - 1. Develop a compact detector module.
 - Require few wire and other connections through the MR scanner.
- No relevant performance degredation by MR gradients and HF signals from MR operation.
- Sub-nanosecond timing for ToF PET.
- ▶ Several thousand channels even in a "small" animal scanner.
- Rugged design to withstand the vibrations inside an MR scanner.

State of the Art in Simultaneous PET/MR

- Use a light guide to guide the scintillation light to PMT detectors outside the magnet.
 Drawback: Lots of optical fibres, bad light yield.
- APD detectors with first amplification stage inside the field, all other processing outside the B field.
 Drawback: Lots of connections required, potential of large noise pickup on long wires.
- → Not scalable.

M. Judenhofer et al., "Simultaneous PET-MRI: a new approach for functional and morphological imaging," *Nature Medicine* 14, 459 - 465 (2008)

Our Approach

Put everything inside the tube:

- Light detection
- Amplification
- Digitization
- Timestamping
- Serialization
- → Only few data connections for a large number of channels.

Methods

- Highly integrated electronics.
- Very compact module design.
- Large area SiPM detectors.
- Aggressive mechanics and cooling.
- Differential architecture for EMI robustness.
- Modular concept with defined interfaces on the connectors.

Actual size: 33×33 mm².

Block Diagram

Top PCB: Detectors

- 64 channels.
- ▶ 4×4 mm² SiPMs.
- 4×4 monolithic arrays of 2×2 silicon photomultipliers.
 - → Entire surface covered by SiPMs
 - \rightarrow High packing fraction.
- Passive components required to interface to the ASICs located on the bottom side of the PCB.

Middle PCB: Hit Digitizing

- Two readout ASICs, each handling 32 SiPM channels.
 - Self-triggering by leading-edge discriminator.
 - 100 ps FWHM coincidence timing resolution.
 - 20 bit timestamps.
 - 9 bit ADC for energy readout.
- Digitization of absolute arrival time and signal energy.
- All-digitial, differential output to the FPGA.

Bottom PCB: Control, Processing

- Xilinx Spartan FPGA for
 - Control of the ASICs.
 - Hit data preprocessing.
 - Interfacing between the ASICs and the system.
- DACs to generate bias voltages for the ASICs and SiPM devices.
- Interface to DAQ: Several LVDS connections.
- ► Local analog power regulation.

Test Setup

- Testboard containing a single PCB stack and interface to USB.
- Light-tight box for measurements with SiPMs.

- Detector board replaced with dummy board connecting pulse inputs to SMA connectors for ASIC characterization.
- ▶ Linux-based data acquisition and data analysis.

Results - Setup Verification

 22 Na spectrum measured with a single LYSO crystal standing on one SiPM. Bad optical coupling! \rightarrow Bad resolution.

But: Proves that the entire stack works as expected!

Results - Discriminator Threshold

Results - Threshold Dispersion I

Results - Threshold Dispersion II

Results - Threshold Dispersion III

- Bar offset: Switching offset of a differential pair of NMOS transistors in close proximity.
- Effects: Large threshold dispersion between channels, limit on lowest possible threshold.
- Compensation circuit implemented in next generation ASIC.

Future System Integration

- Motherboard PCB with six (3×2) stacks with minimal spacing.
- Large FPGA to process the data and send it off via Gigabit Ethernet.
- Box to firmly hold the components and provide the infrastructure for cooling.

Outlook

- Improved ASIC
 - Decreased discriminator threshold dispersion.
 - Lower power consumption.
 - Should be back from fabrication just today.
- Operation with full crystal array.
- Measure performance in MR.

Acknowledgements

This project is supported by the European Union under the 7th framework program (Grant Agreement #201651).