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Project Overview

I Project funded by the European Union in FP7.
I Develop a compact PET detector module for use in a

simultaneous ToF PET/MR detector, scalable to a
whole-body scanner.

I Develop novel reconstruction algorithms to make
good use of the available information (MR based
attenuation and motion correction).

RTC, 2009 2



Requirements for the PET Detector

I MR compatible design, i.e. no magnetic components,
especially no PMTs, inside the magnet, no wire loops.

I Fit inside the little available space inside the MR
scanner.
1. Develop a compact detector module.
2. Require few wire and other connections through the

MR scanner.
I No relevant performance degredation by MR

gradients and HF signals from MR operation.
I Sub-nanosecond timing for ToF PET.
I Several thousand channels even in a “small” animal

scanner.
I Rugged design to withstand the vibrations inside an

MR scanner.
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State of the Art in Simultaneous PET/MR

I Use a light guide to guide the scintillation light to PMT
detectors outside the magnet.
Drawback: Lots of optical fibres, bad light yield.

I APD detectors with first
amplification stage inside
the field, all other
processing outside the B
field.
Drawback: Lots of
connections required,
potential of large noise
pickup on long wires.

M. Judenhofer et al., “Simultaneous PET-MRI:
a new approach for functional and morpholog-
ical imaging,” Nature Medicine 14, 459 - 465
(2008)

→ Not scalable.
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Our Approach

Put everything inside the tube:
I Light detection
I Amplification
I Digitization
I Timestamping
I Serialization

→ Only few data connections for a large number of
channels.
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Methods

I Highly integrated
electronics.

I Very compact module
design.

I Large area SiPM
detectors.

I Aggressive mechanics
and cooling.

I Differential architecture
for EMI robustness.

I Modular concept with
defined interfaces on the
connectors.

Actual size: 33×33 mm².
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Block Diagram
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Top PCB: Detectors

I 64 channels.
I 4×4 mm² SiPMs.
I 4×4 monolithic arrays of 2×2 silicon

photomultipliers.
→ Entire surface covered by SiPMs
→ High packing fraction.

I Passive components required to
interface to the ASICs located on
the bottom side of the PCB.
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Middle PCB: Hit Digitizing

I Two readout ASICs, each handling
32 SiPM channels.
I Self-triggering by leading-edge

discriminator.
I 100 ps FWHM coincidence timing

resolution.
I 20 bit timestamps.
I 9 bit ADC for energy readout.

I Digitization of absolute arrival time
and signal energy.

I All-digitial, differential output to the
FPGA.
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Bottom PCB: Control, Processing

I Xilinx Spartan FPGA for
I Control of the ASICs.
I Hit data preprocessing.
I Interfacing between the ASICs and

the system.

I DACs to generate bias voltages for
the ASICs and SiPM devices.

I Interface to DAQ: Several LVDS
connections.

I Local analog power regulation.
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Test Setup

I Testboard
containing a single
PCB stack and
interface to USB.

I Light-tight box for
measurements
with SiPMs.

I Detector board replaced with dummy board
connecting pulse inputs to SMA connectors for ASIC
characterization.

I Linux-based data acquisition and data analysis.
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Results – Setup Verification
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22Na spectrum measured with a single LYSO crystal
standing on one SiPM. Bad optical coupling! → Bad
resolution.
But: Proves that the entire stack works as expected!
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Results – Discriminator Threshold
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Results – Threshold Dispersion I
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Results – Threshold Dispersion II
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Results – Threshold Dispersion III

I Bar offset: Switching offset of a differential pair of
NMOS transistors in close proximity.

I Effects: Large threshold dispersion between
channels, limit on lowest possible threshold.

I Compensation circuit implemented in next generation
ASIC.
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Future System Integration

I Motherboard PCB with
six (3×2) stacks with
minimal spacing.

I Large FPGA to process
the data and send it off
via Gigabit Ethernet.

I Box to firmly hold the
components and provide
the infrastructure for
cooling.
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Outlook

I Improved ASIC
I Decreased discriminator threshold dispersion.
I Lower power consumption.
I Should be back from fabrication just today.

I Operation with full crystal array.
I Measure performance in MR.
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