ASIAN FORUM FOR ACCELERATORS AND DETECTORS (AFAD 2015)

Summary Report of WG6 Networking and Computing

Eric Yen

(Academia Sinica Grid Computing Centre) and the WG6 Coordinators

WG6: 11 Presentations/4 Sessions Balance of Requirements and Resources

	LHC/WLCG (200-4000 MB/s)	AMS/ WLCG	BELLE II/DIRAC (1800 MB/s)	BEPC/BES (3PB/5yr)	Neutrino (Daya Bay) (200TB/yr)	Networking
AU	ATLAS		Х			AARNet
CN	ALICE, ATLAS, CMS, LHCb	7	Х	Х	Х	CERNET, CNGI- CERNET2
IN	CMS, ALICE		BELLE II, ILC	Х		NKN, TEIN
JP	ATLAS, ALICE		Х	Х		SINET
KR	ALICE (T1), CMS	2	х			KREONET, Gloriad
TH	CMS/WLCG			Х		UniNet
TW	ATLAS (T1), CMS	4	4		1	ASGCNet, TWAREN

Source: Prof. Hara, KEK

Belle II Collaboration

ATLAS, 38 countries, 177 institutes, ~3000 members CMS: 42 countries, 182 institutes, 4300 members ALICE: 36 countries, 131 institutes, 1200 members LHCb: 16 countries, 67 institues, 1060 members

Asia: ~45%

Japan : 141 Korea : 36 Taiwan : 26 India : 26 China : 19 Australia : 21

N. America :~16% US: 72 Canada:17

Mexico:8

Europe : ~39% Germany : 88 Italy : 61 Russia : 38 Slovenia : 17 Austria : 14 Poland : 11 Czech rep. : 7

as of Nov 28, 2014

 $others: < 5 \ colleagues / country$

New Experiments

CEPC, 2028

CEPC (Future Project)

- Next Generation Accelerator in China, Circular Electron Positron Collider, Higgs/Z Factory
- **CEPC** basic parameters:
 - Beam energy ~120 GeV.
 - Synchrotron radiation power ~50 MW.
 - 50/70 km in circumference.
- **CEPC** timetable
 - Pre-study, R&D and preparation work
 - pre-study: 2013-15
 - R&D: 2016-2020
 - Engineering Design: 2015-2020
 - Construction: 2021-2027
 - Data taking: 2028-2035

LHAASO (Future Project)

- Large High Altitude Air Shower Observatory, located on the border of Sichuan and Yunnan Province
- multipurpose project with a complex detector array for high energy gamma ray and cosmic ray detection
- Expected to be operational in 2019
- ~1.2PB data/year * 10 Years
- On-site storage and computing resources. Data will be filtered and compressed before transferring back to IHEP

LHAASO, 2019 1.2PB/yr

2PB/yr Neutrino Experiments

JUNO, 2019

- Daya Bay Reactor Neutrino Experiment
 - To measure the mixing angle θ_{13}
 - 300 collaborators from 38 institutions
 - Produces ~200TB/Year (2011-2018)
- JUNO Jiangmen Underground Neutrino Observatory (Future Project)
 - Start to build in 2014, operational in 2019
 - 20 kt LS detector
 - 2-3% energy resolution
 - **Rich physics opportunities**
 - Estimated to produce 2PB data/year for 10 years

ComputerCenter.HEP

Source: Prof. Wu, IHEP

Belle I Considerations for Belle I Comp.

Why do we use GRID?

- 50 times more data than the Belle's data (1999-2010)
 - \rightarrow 0(50) times more computing resources
- Required resources are too large to be obtained by one center (=KEK)
- Data easily available to all the international collaborators
- Have to enable all Belle II member institutes to contribute Responsibility-sharing is reasonable as well as detectors (Ine tractions of resources will be determined by a MoU.)
 - \rightarrow Distributed computing system based on grid services (e.g. EMI)
 - \rightarrow Can benefit from existing LCG infrastructure
 - \rightarrow Profit from experience of LHC experiments
 - and their well-established and matured solutions

We decided to adopt GRID computing

Experiences

- Scientific requirements (well-defined computing model) are driving the evolution of research infrastructure
 - Distributed infrastructure is the norm
 - Grid + Cloud + local cluster: WLCG/EGI, DIRAC, Direct
 Submission
 - Academic resources + Commercial Cloud Resources (AWS)
- International Collaboration has to be strengthening for larger science and wider disciplines
 - Sharing of distributed infrastructure, trust framework and resources
 - Sharing of tools, technology and even application framework
 - Challenges often are the gaps between user communities and resource providers

Regional Networking Matrix

	AU	CN	НК	IN	JP	KR	SG	TW
AU			2.5G				2.5G (+2.5G)	
CN			2x2.5G, 2.5G					2x1G
НК	2.5G	2x2.5G, 2.5G		2.5G	10G + 2.5G	10G	10G	2.5G+10 G
IN			2.5G				2.5G	
JP			12.5G				10G	2.5G
KR			10G					
SG	2.5G (+2.5G)		10G	2.5G	10G			
TW		1G: CERNET, 1G CSTNET	2.5G+10 G		2.5G			

Connectivity between Asia and Other Region

	US	Europe
AU	2x40 (2x100G in 2016)	
CN	10G (I2-CERNET2)	10G (Geant)
НК		
IN		2.5G to ES; 10G to Geant
JP	3x10G to LA, NY, WA; <mark>100G (2016)</mark>	3x10G to Geant
KR	10G	10G
SG		
тw	2x10G to Chicago + 5x2.5G	2x10G to AMX and CERN

Future Perspectives

- Reliable and Fast Data Delivery and Archive
- Software Define Network development is the trend: virtual network and intelligent services
- How to collaborate to meet the requirements
 - E.g., with regional NRENs: APAN
 - Regional Coordination framework: experiment, AFAD, ISGC, etc.
 - Partner institutes have to negotiate with NREN and local service providers
 - Sharing the knowledge/tools/infrastructure/technology of other experiments really helps (e.g., the networking and Grid technology)