Peking,

March 5th 2015

The role

of composite resonances

...With a light Higgs in the EW chiral Lagrangian

J.J. Sanz-Cillero (UAM/CSIC-IFT)

In collaboration with:

A. Pich (IFIC, Valencia, Spain)

- J. Santos (IFIC, Valencia, Spain)
- I. Rosell (CEU, Valencia, Spain)

Work in progress PRL 110 (2013) 181801 [arXiv:1212.6769] JHEP 01 (2014) 157 [arXiv:1310.3121]

UNIVERSIDAD AUTONOMA

DE MADRID

OUTLINE

1) Low-energy theory: The EW Chiral Lagrangian+Higgs (ECLh)

2) ECLh + Resonances: custodial inv. Lagrangian for light+R

3) Basic examples: tree-level and 1-loop

The Program:

Extract prediction for low-energy observables

•In this talk, no explicit reference to

- 100 TeV colliders
- tops
- flavour

•However, we will see they are closely related issues to this talk:

- 100 TeV
- tops
- flavour

- → Resonance direct searches
- → Fermion sector in the EFT
- → Fermion families in the EFT

Non-linear low-energy EFT: EW Chiral Lagrangian + h (ECLh)

Energy scales?

EFT general considerations

- 1. "SM" content: Bosons χ : Higgs h + EW Golsdtones ω^{\pm} , z + gauge bosons A^{a}_{μ} , B_{μ} ,
 - Fermions ψ : (t,b)-type doublets
- 2. Applicability: $E << \Lambda_{ECLh} \sim min\{4\pi v, M_R\}$ (4 $\pi v \sim 3 \text{ TeV}$)
- 3. EW would-be Goldston bosons \rightarrow Non-linear realization U(ω^a)
- 4. <u>Custodial symmetry</u>: $SU(2)_L \otimes SU(2)_R / SU(2)_{L+R}$ pattern
- 5. Gauge symmetry: $SU(2)_{L} \otimes U(1)_{Y}$

Additionally it is appropriate to work with

6. Renormalizable R_{ξ} gauge: Landau gauge convenient ($m_{\omega \pm,z} = 0$)

BOSONIC SECTOR : Υ.

• Building blocks with bosons χ ^(x):

EW Goldstones (ω^a)

 $\Rightarrow \begin{array}{rcl} D_{\mu}U &=& \partial_{\mu}U - i\hat{W}_{\mu}U + iU\hat{B}_{\mu} \,, \\ u^{\mu} &=& iu_{R}^{\dagger}(\partial_{\mu} - i\hat{B}_{\mu})u_{R} - iu_{L}^{\dagger}(\partial_{\mu} - i\hat{W}_{\mu})u_{L} &=& iu(D^{\mu}U)^{\dagger}u \,, \end{array}$

EW gauge bosons (B, W^a) $\rightarrow \qquad \hat{W}_{\mu\nu} = \partial_{\mu}\hat{W}_{\nu} - \partial_{\nu}\hat{W}_{\mu} - i[\hat{W}_{\mu}, \hat{W}_{\nu}], \qquad \hat{B}_{\mu\nu} = \partial_{\mu}\hat{B}_{\nu} - \partial_{\nu}\hat{B}_{\mu} - i[\hat{B}_{\mu}, \hat{B}_{\nu}], \\ f^{\mu\nu}_{+} = u^{\dagger}_{L}\hat{W}^{\mu\nu}u_{L} \pm u^{\dagger}_{R}\hat{B}^{\mu\nu}u_{R}.$

Higgs (singlet h)

h via polynomials $\mathscr{F}(h/v)$ & derivatives \rightarrow

soft-scale!!!

• "Chiral" counting^{*,**}:

$$\begin{array}{cccc} \partial_{\mu}, & m_W, & m_Z, & & \\ D_{\mu}U, & V_{\mu}, & g'v \mathcal{T}, & \hat{W}_{\mu}, & \hat{B}_{\mu} & \sim & \mathcal{O}(p), \\ & & \hat{W}_{\mu\nu}, & \hat{B}_{\mu\nu} & \sim & \mathcal{O}(p^2). \end{array}$$

(x) Apelquist, Bernard '80

- (x) Longhitano '80, '81
- (x) Herrero, Morales '95
- (x) Pich,Rosell,SC '12 '13
- (x) Alonso et al., PLB722 (2013) 330

...etc

J.J. Sanz Cillero

* Buchalla, Catà, Krause '13

* Hirn.Stern '05

- * Delgado, Dobado, Herrero, SC, JHEP1407 (2014) 149
- ** Urech '95

FERMIONIC SECTOR: Ψ

Custodial SU(2)_L ⊗SU(2)_R ⊗U(1)_{B-L} framework ⁽⁺⁾

• (t,b)-type doublets
$$\Psi$$
: $\psi_L = \begin{pmatrix} t_L \\ b_L \end{pmatrix}$, $\psi_R = \begin{pmatrix} t_R \\ b_R \end{pmatrix}$

turned into a covariant doublet ξ with the help of Goldstones u(x)

$$\begin{aligned} \xi_{m}^{a} &= \frac{1}{2} (\delta^{ab} - \gamma_{5}^{ab}) u_{mn} \psi_{n}^{b} &+ \frac{1}{2} (\delta^{ab} + \gamma_{5}^{ab}) (u^{\dagger})_{mn} \psi_{n}^{b} \\ & \\ \xi_{L} &= \xi_{L} + \xi_{R}, \\ \xi_{L} &= u_{L}^{\dagger} \psi_{L} = u \psi_{L}, \qquad \xi_{R} = u_{R} \psi_{R} = u^{\dagger} \psi_{R} \end{aligned}$$

•Breaking down to $SU(2)_{L} \otimes U(1)_{Y}$ in $d_{\mu} \xi$ only through spurions

$$\hat{W}_{\mu} = -\frac{g}{2} W_{\mu}^{a} \sigma^{a} , \hat{B}_{\mu} = -\frac{g'}{2} B_{\mu} \sigma^{3} , X_{\mu} = -B_{\mu} ,$$

- More general EFT based on $SU(2)_L \otimes U(1)_Y$ also possible *
- (+) Pich,Rosell,Santos,SC, forthcoming
- * Buchalla,Catà,Krause '13
- * Hirn,Stern '05

J.J. Sanz Cillero

'CHIRAL' COUNTING

"Chiral" counting *

$$\frac{\chi}{v} \sim \mathcal{O}(p^0)$$
, $\frac{\psi}{v} \sim \mathcal{O}\left(p^{\frac{1}{2}}\right)$, $\partial_{\mu}, m_{\chi}, m_{\psi} \sim \mathcal{O}(p)$

and for the building blocks, $u(\varphi/v), U(\varphi/v), \frac{h}{v}, \frac{W^a_{\mu}}{v}, \frac{B_{\mu}}{v} \sim \mathcal{O}(p^0)$, $D_{\mu}U, u_{\mu}, \hat{W}_{\mu}, \hat{B}_{\mu} \sim \mathcal{O}(p)$,

$$\hat{W}_{\mu\nu}, \hat{B}_{\mu\nu}, f_{\pm \mu\nu} \sim \mathcal{O}(p^2)$$
,

$$\partial_{\mu_1} \partial_{\mu_2} \dots \partial_{\mu_n} \mathcal{F}(h/v) \sim \mathcal{O}(p^n) ,$$

 $rac{\xi}{v} \sim \mathcal{O}\left(p^{rac{1}{2}}
ight)$

• Assignment of the 'chiral' dimension: *

$$\mathcal{L}_{p^{\hat{d}}} \sim a_{(\hat{d})} p^{\hat{d}-N_F/2} \left(\frac{\overline{\psi}\psi}{v^2}\right)^{N_F/2} \sum_{j} \left(\frac{\chi}{v}\right)^{j}$$

- * Manohar, Georgi, NPB234 (1984) 189
- * Hirn,Stern '05
- * Buchalla,Catà,Krause '13
- * Pich,Rosell,Santos,SC, forthcoming

'CHIRAL' expansion in ECLh

• EFT Lagrangian at LO and NLO in chiral exp. *

$$\mathcal{L}_{ECLh} = \mathcal{L}_{p^{2}} + \mathcal{L}_{p^{4}} + \dots$$

$$\overline{\mathcal{L}_{p^{4}}} = -\frac{i}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu}$$

$$+ i \overline{\psi} \overline{\psi} \psi + k.c.$$

$$+ \overline{\psi}_{i} \overline{\psi}_{ij} \psi \psi + k.c.$$

$$+ \overline{\psi}_{i} \psi_{ij} \psi \psi + k.c.$$

which leads to a chiral exp. in the sctatering

$$T(2 \to 2) = \frac{p^2}{v^2} + \underbrace{\frac{a_{(4)}p^4}{v^4}}_{tree-NLO} + \underbrace{\frac{p^4}{16\pi^2 v^4}}_{1\ell oop-NLO} + \dots$$

* Weinberg '79

* Manohar, Georgi, NPB234 (1984) 189

* Urech '95

* Georgi, Manohar NPB234 (1984) 189

* Buchalla,Catà,Krause '13

* Hirn,Stern '05

- * Delgado, Dobado, Herrero, SC, JHEP1407 (2014) 149
- * Pich,Rosell,Santos,SC, forthcoming

EW Chiral Lagrangian + h + R: Models, assumptions, completions...

RESONANCE LAGRANGIAN

- Introduce light dof + Resonances *,**
- Lightest SU(2) triplets V, A, S, P and singlets V1, A1, S1, P1 **.(x)

(antisymetric-tensor formalism $R_{\mu\nu}$ for spin-1 Resonances *)

• To extract their contribution to \mathcal{L}_{p4}

(NOTICE that this avoids contributions to \mathcal{L}_{p2} , avoiding large low-energy corrections to SM)

→ We need only <u>R operators O(p²)</u>

$$\mathcal{L}_{R} = \frac{1}{2} \langle \nabla^{\mu} R \nabla_{\mu} R - M_{R}^{2} R^{2} \rangle + \langle R \chi_{R} \rangle \qquad (R = S, P),
\mathcal{L}_{R} = -\frac{1}{2} \langle \nabla^{\lambda} R_{\lambda \mu} \nabla_{\sigma} R^{\sigma \mu} - \frac{1}{2} M_{R}^{2} R_{\mu \nu} R^{\mu \nu} \rangle + \langle R_{\mu \nu} \chi_{R}^{\mu \nu} \rangle \qquad (R = V, A),
\mathcal{L}_{R_{1}} = \frac{1}{2} \left(\partial^{\mu} R_{1} \partial_{\mu} R_{1} - M_{R_{1}}^{2} R_{1}^{2} \right) + R_{1} \chi_{R_{1}} \qquad (R_{1} = S_{1}, P_{1}),
\mathcal{L}_{R_{1}} = -\frac{1}{2} \left(\partial^{\lambda} R_{1 \lambda \mu} \partial_{\sigma} R_{1}^{\sigma \mu} - \frac{1}{2} M_{R_{1}}^{2} R_{1 \mu \nu} R_{1}^{\mu \nu} \right) + R_{1 \mu \nu} \chi_{R_{1}}^{\mu \nu} \qquad (R_{1} = V_{1}, A_{1}),$$

* Ecker et al. '89

** Cirigliano et al., NPB753 (2006) 139

** Pich,Rosell,SC '12, '13

** Pich,Rosell,Santos,SC, forthcoming

(x) Caveats from higher resonances. See e.g.

Marzocca, Serone, Shu, JHEP 1208 (2012) 013

Integrating out the RESONANCES

$$e^{iS[\chi,\psi]_{\rm EFT}} = \int [dR] e^{iS[\chi,\psi,R]}$$

- At the practical level, *
 - **1.)** Compute the Resonance EoM

for p<<M_R:

2.) Tree-level contribution to the O(p⁴) ECLh for p<<M_R:

$$S[\chi, \psi]_{\rm EFT} = S[\chi, \psi, \frac{R_{\rm c\ell}}{R_{\rm c\ell}}]$$

$$\begin{split} R_{c\ell} &= \frac{1}{M_R^2} \left(\chi_R - \frac{1}{N} \langle \chi_R \rangle \right) + \dots \qquad (R = S, P) \,, \\ R_{c\ell}^{\mu\nu} &= -\frac{2}{M_R^2} \left(\chi_R^{\mu\nu} - \frac{1}{N} \langle \chi_R^{\mu\nu} \rangle \right) + \dots \qquad (R = V, A) \,, \\ R_{1 \ c\ell} &= \frac{1}{M_{R_1}^2} \chi_{R_1} + \dots \qquad (R_1 = S_1, P_1) \,, \\ R_{1 \ c\ell}^{\mu\nu} &= -\frac{2}{M_{R_1}^2} \chi_{R_1}^{\mu\nu} + \dots \qquad (R = V, A) \,, \end{split}$$

$$\begin{split} \Delta \mathcal{L}_{R}^{\mathcal{O}(p^{4})} &= \frac{1}{2M_{R}^{2}} \left(\left\langle \chi_{R} \chi_{R} \right\rangle - \frac{1}{N} \left\langle \chi_{R} \right\rangle^{2} \right) & (R = S, P) ,\\ \Delta \mathcal{L}_{R}^{\mathcal{O}(p^{4})} &= -\frac{1}{M_{R}^{2}} \left(\left\langle \chi_{R}^{\mu\nu} \chi_{R\mu\nu} \right\rangle - \frac{1}{N} \left\langle \chi_{R}^{\mu\nu} \right\rangle^{2} \right) & (R = V, A) ,\\ \Delta \mathcal{L}_{R_{1}}^{\mathcal{O}(p^{4})} &= \frac{1}{2M_{R_{1}}^{2}} \left(\chi_{R_{1}} \right)^{2} & (R_{1} = S_{1}, P_{1}) ,\\ \Delta \mathcal{L}_{R_{1}}^{\mathcal{O}(p^{4})} &= -\frac{1}{M_{R_{1}}^{2}} \left(\chi_{R_{1}}^{\mu\nu} \chi_{R_{1}\mu\nu} \right) & (R_{1} = V_{1}, A_{1}) . \end{split}$$

* Ecker et al. '89

* Cirigliano et al., NPB753 (2006) 139

* Colangelo, SC, Zuo, JHEP1211 (2012) 012

J.J. Sanz Cillero

Basic predictions:

at tree-level

& 1 loop

• I could show you this,

$$\chi_{V}^{\mu\nu} = \frac{F_{V}}{2\sqrt{2}} f_{+}^{\mu\nu} + \frac{iG_{V}}{2\sqrt{2}} [u^{\mu}, u^{\nu}] + c_{V0}v J_{T}^{\mu\nu} + \frac{c_{V1}}{2} (\nabla^{\mu} J_{V}^{\nu} - \nabla^{\nu} J_{V}^{\mu}) + \frac{ic_{V2}}{2} ([J_{A}^{\mu}, u^{\nu}] - [J_{A}^{\nu}, u^{\mu}]) + \frac{c_{V3}}{2} \left(\frac{(\partial^{\mu} h)}{v} J_{V}^{\nu} - \frac{(\partial^{\nu} h)}{v} J_{V}^{\mu} \right) + c_{V4} \epsilon^{\mu\nu\alpha\beta} \{J_{V\alpha}, u_{\beta}\} + c_{V5} \epsilon^{\mu\nu\alpha\beta} J_{A'\alpha\beta},$$

$$\chi_{A}^{\mu\nu} = \frac{F_{A}}{2\sqrt{2}} f_{-}^{\mu\nu} + \frac{\lambda_{1}^{hA}}{\sqrt{2}} ((\partial^{\mu} h) u^{\nu} - (\partial^{\nu} h) u^{\mu}) + \frac{c_{A1}}{2} (\nabla^{\mu} J_{A}^{\nu} - \nabla^{\nu} J_{A}^{\mu}) + \frac{ic_{A2}}{2} ([J_{V}^{\mu}, u^{\nu}] - [J_{V}^{\nu}, u^{\mu}])$$

etc.

• But it is more instructive to focus on a case (full R Lagrangian in *)

$$\mathcal{L}_{V} = Tr\{V_{\mu\nu} \left(\frac{F_{V}}{2\sqrt{2}}f_{+}^{\mu\nu} + \frac{iG_{V}}{2\sqrt{2}}[u^{\mu}, u^{\nu}] + c_{V1}\nabla^{\mu}J_{V}^{\nu} + ...\right)\}$$

• Integrate out V:

Full Higgsless result (Longhitano ^(x))

Higgsless part CP conserving But P-even & P-odd terms

(x) Longhitano '80, '81

* Pich,Rosell,Santos,SC,1501.07249 [hep-ph] (proceedings); forthcoming

(general custodial R Lagrangian in *)

$$a_{1} = -\frac{F_{V}^{2}}{4M_{V}^{2}} + \frac{\tilde{F}_{V}^{2}}{4M_{V}^{2}} + \frac{F_{A}^{2}}{4M_{A}^{2}} - \frac{\tilde{F}_{A}^{2}}{4M_{A}^{2}}$$

$$a_{2} - a_{3} = -\frac{F_{V}G_{V}}{2M_{V}^{2}} - \frac{\tilde{F}_{A}\tilde{G}_{A}}{2M_{A}^{2}}$$

$$a_{2} + a_{3} = -\frac{\tilde{F}_{V}G_{V}}{2M_{V}^{2}} - \frac{F_{A}\tilde{G}_{A}}{2M_{A}^{2}}$$

$$a_{4} = \frac{G_{V}^{2}}{4M_{V}^{2}} + \frac{\tilde{G}_{A}^{2}}{4M_{A}^{2}}$$

$$a_{5} = \frac{c_{d1}^{2}}{4M_{S_{1}}^{2}} - \frac{G_{V}^{2}}{4M_{V}^{2}} - \frac{\tilde{G}_{A}^{2}}{4M_{A}^{2}}$$

$$H_{1} = -\frac{F_{V}^{2}}{8M_{V}^{2}} - \frac{\tilde{F}_{V}^{2}}{8M_{V}^{2}} - \frac{F_{A}^{2}}{8M_{A}^{2}} - \frac{\tilde{F}_{A}^{2}}{8M_{A}^{2}}$$

$$\tilde{H}_{1} = -\frac{F_{V}\tilde{F}_{V}}{4M_{V}^{2}} - \frac{F_{A}\tilde{F}_{A}}{4M_{A}^{2}}$$

PREDICTIONS: TREE-LEVEL results + UV-constraint

Higgsless part CP conserving Only P-even

The role of R in ECLh 20/24

PREDICTIONS: ONE-LOOP results + UV-constraint Higgsless C & P-even

$$T = \frac{3}{16\pi\cos^2\theta_W} \left[1 + \log\frac{m_H^2}{M_V^2} - \kappa_W^2 \left(1 + \log\frac{m_{S_1}^2}{M_A^2} \right) \right]$$

$$S = \frac{4\pi v^2 \left(\frac{1}{M_V^2} + \frac{1}{M_A^2}\right) + \frac{1}{12\pi} \left[\left(\log \frac{M_V^2}{m_H^2} - \frac{11}{6}\right) - \kappa_W^2 \left(\log \frac{M_A^2}{m_{S_1}^2} - \frac{11}{6} - \frac{M_A^2}{M_V^2} \log \frac{M_A^2}{M_V^2}\right) \right]$$

[terms $O(m_s^2/M_{V,A}^2)$ neglected]

(k_w=a)

✓ 1st and 2nd WSRs at LO and NLO + $\pi\pi$ -VFF:

 \rightarrow 2nd WSR: 0 < a = M_V²/M_A² < 1

* Pich,Rosell, SC, PRL 110 (2013) 181801; JHEP 01 (2014) 157

* Pich,Rosell, SC, PRL 110 (2013) 181801; JHEP 01 (2014) 157

Similar conclusions, but softened

For $M_V < M_A$:

- A moderate resonance-mass splitting implies a ≈ 1.
- M_V < 1 TeV implies large resonancemass splitting.
- ✓ M_A > 1.5 TeV at 68% CL.

Conclusions

- Chiral power counting in the low-energy non-linear EFT (ECLh)
- Build custodial-invariant Lagrangian w/ light dof + R
- Low-energy matching: contributions from R to the ECLh at CO(p⁴)
- UV-completion assumptions: further constraints on the predictions

<u>Tree-level</u> predictions of the O(p4) Wilson coefficients

1-loop applications:

- Resonances perfectly allowed by S & T at $M_R \sim 4\pi v \approx 3$ TeV
- Resonances perfectly compatible with LHC a ≈ 1

BACKUP SLIDES

$SU(2)_{L} \otimes SU(2)_{R} / SU(2)_{L+R}$ Resonance Theory (P-even)

$$\mathcal{L} \,=\, \mathcal{L}_{ ext{EW}}^{(2)} + \mathcal{L}_{ ext{GF}} + \mathcal{L}_V + \mathcal{L}_A + \mathcal{L}_{VV}^{ ext{kin}} + \mathcal{L}_{AA}^{ ext{kin}} + .$$
 ...

ſ

w/ field content:

 $SU(2)_{I} \otimes SU(2)_{R}/SU(2)_{I+R}$ EW Goldstones + SM gauge bosons + one SU(2)_L \otimes SU(2)_R singlet Higgs-like scalar S₁ with m_{S1}=126 GeV ***

+ lightest V and A resonances -triplets-(antisym. tensor formalism) (x)

•Relevant resonance Lagrangian (x), **

NOTATIONS: $\omega = \mathbf{a} = \kappa_{\mathbf{W}} = \kappa_{\mathbf{Z}}$

$$= \frac{v^2}{4} \langle \overline{u_{\mu}} u^{\mu} \rangle \left(1 + \frac{2a}{v}h \right)$$

+ $\frac{F_V}{2\sqrt{2}} \langle V_{\mu\nu} f_+^{\mu\nu} \rangle + \frac{iG_V}{2\sqrt{2}} \langle V_{\mu\nu} [u^{\mu}, u^{\nu}] \rangle$
+ ω sector

$$+ \frac{F_A}{2\sqrt{2}} \langle A_{\mu\nu} f_-^{\mu\nu} \rangle + \sqrt{2} \lambda_1^{hA} \partial_\mu h \langle A^{\mu\nu} u_\nu \rangle \qquad \longleftarrow \quad \text{A+h+}\omega \text{ sector}$$

We will have 7 resonance parameters:

 $F_{V}, G_{V}, F_{AW}, \kappa_{W}, \lambda_1^{SA}, M_V$ and M_A

High-energy constraints will be crucial

** Appelquist, Bernard '80 (x) SD constraints: Ecker et al. '89 ** Longhitano '80 '81 (x) EoM simplifications: Xiao, SC '07 ** Dobado, Espriu, Herrero '91 ** Dobado et al. '99

(x) EoM simplifications: Georgi '91

(x) EoM simplification: Pich.Rosell.SC '13 ** Espriu, Matias '95 ... *** Alonso et al. '13

- *** Manohar et al. '13
- *** Elias-Miro et al. '13...

	Р	С	CP	h.c.
S	S	S^T	S^T	S
Р	-P	P^T	$-P^T$	Р
$V^{\mu\nu}$	$V_{\mu\nu}$	$-V^{\mu\nu T}$	$-V_{\mu\nu}^T$	$V^{\mu\nu}$
$A^{\mu\nu}$	$-A_{\mu\nu}$	$A^{\mu uT}$	$-A^T_{\mu\nu}$	$A^{\mu\nu}$

	Р	С	CP	h.c.
U	U^{\dagger}	U^t	U^*	U^{\dagger}
u	u^{\dagger}	u^t	u^*	u^{\dagger}
u^{μ}	$-u_{\mu}$	$u^{\mu t}$	$-u^t_\mu$	u^{μ}
$(d^{\mu}X)$	$(d_{\mu}X')$	$(d^{\mu}X)'$	$(d_{\mu}X)'$	$(d^{\mu}X^{\dagger})$
$f^{\mu\nu}_{\pm}$	$\pm f_{\pm\mu\nu}$	$\mp f_{\pm}^{\mu\nu \ t}$	$-f^t_{\pm\mu\nu}$	$f^{\mu\nu}_{\pm}$
$\partial^{\mu}h$	$\partial_{\mu}h$	$\partial^\mu h$	$\partial_{\mu}h$	$\partial^{\mu}h$

2.1. Oblique Electroweak Observables

Universal oblique corrections via the EW boson self-energies (transverse in the Landau gauge)

$$\mathcal{L}_{\rm v.p.} \doteq -\frac{1}{2} W^3_{\mu} \Pi^{\mu\nu}_{33}(q^2) W^3_{\nu} - \frac{1}{2} B_{\mu} \Pi^{\mu\nu}_{00}(q^2) B_{\nu} - W^3_{\mu} \Pi^{\mu\nu}_{30}(q^2) B_{\nu} - W^+_{\mu} \Pi^{\mu\nu}_{WW}(q^2) W^-_{\nu}$$

✓ S parameter*: new physics in the difference between the Z self-energies at $Q^2=M_Z^2$ and $Q^2=0$.

$$e_3 = \frac{g}{g'} \widetilde{\Pi}_{30}(0), \qquad \Pi_{30}(q^2) = q^2 \widetilde{\Pi}_{30}(q^2) + \frac{g^2 \tan \theta_W}{4} v^2, \qquad S = \frac{16\pi}{g^2} \left(e_3 - e_3^{\rm SM} \right).$$

T parameter*: custodial symmetry breaking

$$e_1 = \frac{\Pi_{33}(0) - \Pi_{WW}(0)}{M_W^2} \stackrel{\text{\tiny set}}{=} \frac{Z^{(+)}}{Z^{(-)}} - 1 \qquad T = \frac{4\pi}{g^{\prime 2} \cos^2 \theta_W} \left(e_1 - e_1^{\text{SM}}\right)$$

We follow the useful dispersive representation introduced by Peskin and Takeuchi* for S and a dispersion relation for T (checked for the lowest cuts):

$$S = \frac{16\pi}{g^2 \tan \theta_W} \int_0^\infty \frac{\mathrm{d}t}{t} \left(\rho_S(t) - \rho_S(t)^{\mathrm{SM}} \right)$$
$$T = \frac{16\pi}{g'^2 \cos^2 \theta_W} \int_0^\infty \frac{\mathrm{d}t}{t^2} \left(\rho_T(t) - \rho_T(t)^{\mathrm{SM}} \right)$$

- ✓ They need to be well-behaved at short-distances to get the convergence of the integral.
- ✓ S and T parameters are defined for a reference value for the SM Higgs mass.

* Peskin and Takeuchi '92.

iii) At next-to-leading order (NLO)*

- Dispersive relations
- Only lightest two-particles cuts have been considered, since higher cuts are supposed to be suppressed**.

iv) High-energy constraints

- ✓ We have seven resonance parameters: importance of short-distance information.
- In contrast to QCD, the underlying theory is ignored
- ✓ Weinberg Sum-Rules (WSR)***:

$$\Pi_{30}(s) = \frac{g^2 \tan \theta_W}{4} s \left[\Pi_{VV}(s) - \Pi_{AA}(s) \right] \left\{ \begin{array}{rcl} \frac{1}{\pi} \int_0^\infty \mathrm{d}t \left[\mathrm{Im}\Pi_{VV}(t) - \mathrm{Im}\Pi_{AA}(t) \right] &= v^2 \\ \frac{1}{\pi} \int_0^\infty \mathrm{d}t \ t \ \left[\mathrm{Im}\Pi_{VV}(t) - \mathrm{Im}\Pi_{AA}(t) \right] &= 0 \end{array} \right\}$$

- ✓ We have 7 resonance parameters and up to 5 constraints:
 - \checkmark With both, the 1st and the 2nd WSR: κ_W and M_V as free parameters
 - \checkmark With only the 1st WSR: κ_W , M_V and M_A as free parameters

* Barbieri et al.'08 * Cata and Kamenik '08	** Pich, IR and Sanz-Cillero '12	*** Weinberg '67 *** Bernard et al. '75

* Orgogozo and Rynchov '11 '12

The Impact of Resonances in the Electroweak Effective Lagrangian, I. 30/11/

iii) At next-to-leading order (NLO)*

- Dispersive relations
- Only lightest two-particles cuts have been considered, since higher cuts are supposed to be suppressed**.

0

iv) High-energy constraints

- ✓ We have seven resonance parameters: importance of short-distance information.
- In contrast to QCD, the underlying theory is ignored
- ✓ Weinberg Sum-Rules (WSR)***:

1st WSR at LO:	$F_V^2 M_V^2 - F_A^2 M_A^2 = 0$	1st WSR at NLO (= VFF [^] and AFF ^{^^}):	$F_V G_V = v^2$ $F_A \lambda_1^{SA} = \kappa_W v$
2nd WSR at LO:	$F_V^2 - F_A^2 = v^2$	2nd WSR at NLO:	$\kappa_W = \frac{M_V^2}{M_A^2}$

- ✓ We have 7 resonance parameters and up to 5 constraints:
 - \checkmark With both, the 1st and the 2nd WSR: κ_W and M_V as free parameters
 - \checkmark With only the 1st WSR: κ_W , M_V and M_A as free parameters

* Barbieri et al.'08	** Pich. IR and Sanz-Cillero '12	*** Weinberg '67	∧ Ecker et al. '89	^Pich. IR and Sanz-Cillero '08
* Cata and Kamenik '08		*** Bernard et al. '75.		- ,
* Orgogozo and Rynchov '11 '12				_

J.J. Sanz Cillero

The Impact of Resonances in the Electroweak Effective Lagrangian, I. 1844. The role of R in ECLh 32/24

2.3. Phenomenology

$$\frac{\text{S} = 0.03 \pm 0.10 * (\text{M}_{\text{H}} = 0.126 \text{ TeV})}{\text{T} = 0.05 \pm 0.12 * (\text{M}_{\text{H}} = 0.126 \text{ TeV})}$$

i) LO results

i.i) 1st and 2nd WSRs**

$$S_{\rm LO} = \frac{4\pi v^2}{M_V^2} \left(1 + \frac{M_V^2}{M_A^2} \right)$$
$$\frac{4\pi v^2}{M_V^2} < S_{\rm LO} < \frac{8\pi v^2}{M_V^2}$$

i.ii) Only 1st WSR***

$$S_{\rm LO} = 4\pi \left\{ \frac{v^2}{M_V^2} + F_A^2 \left(\frac{1}{M_V^2} - \frac{1}{M_A^2} \right) \right\}$$
$$S_{\rm LO} > \frac{4\pi v^2}{M_V^2}$$

At LO $M_A > M_V > 1.5$ TeV at 95% CL

* Gfitter ** Peskin and Takeuchi '92 *** Pich, IR and Sanz-Cillero '12

* LEP EWWG

* Zfitter J.J. Sanz Cillero The Impact of Resonances in the Electroweak Effective Lagrangian, 1. 133/11/ ine role of R in ECLh 33/24

3.1. Matching the theories*

- Once we have constrained the Resonance Theory by using short-distance constraints and the Phenomenology, we want to use it to determine the Low-Energy Constants (LECs).
- ✓ Two strongly coupled Lagrangians for two energy regions:
 - Electroweak Effective Theory at low energies* (without resonances)
 - Resonance Theory at high energies** (with resonances)
- ✓ The LECs contain information from heavier states.
- ✓ Steps:
 - 1. Building the resonance Lagrangian
 - 2. Matching the two effective theories
 - 3. Requiring a good short-distance behaviour
- This program works in QCD: estimation of the LECs (Chiral Perturbation Theory) by using Resonance Chiral Theory
- ✓ As a preliminary example we show this game in the purely bosonic Lagrangian

^{*} Pich, IR, Santos and Sanz-Cillero '14 [in progress]

4. Summary

Constraining strongly-coupled models by considering S and T

- ✓ Strongly coupled scenarios are allowed by the current experimental data.
- ✓ The Higgs-like boson must have a WW coupling close to the SM one (κ_W =1):
 - With the 2nd WSR κ_W in [0.94, 1] at 95% CL
 - ✓ For larger departures from κ_W =1 the 2nd WSR must be dropped.
 - ✓ A moderate resonance-mass splitting implies $κ_W ≈ 1$
- ✓ Resonance masses above the TeV scale:
 - ✓ At LO $M_A > M_V > 1.5$ TeV at 95% CL.
 - ✓ With the 2nd WSR M_V > 4 TeV at 95% CL.
 - \checkmark With only the 1st WSR M_V < 1 TeV implies large resonance-mass splitting.

Determining the LECs in terms of resonance couplings

- ✓ Matching the Resonance Theory and the Electroweak Effective Theory.
- ✓ Similar to the QCD case.
- ✓ Short-distance constraints are fundamental.
<u>A Warm-up example:</u>

S & T parameters at O(p⁴)

•Do oblique parameters exclude strongly-coupled models?

The EWPO Oblique Parameters

don't exclude them at all

* Peskin, Takeuchi '92

→<u>W³B correlator*</u>

J.J. Sanz Cillero

The role of R in ECLh 38/24

• More observables* can over-constrain the $a_i(\mu)$ BUT not (S,T) alone!!!

• Taking just tree-level is incomplete
$$\longrightarrow \begin{bmatrix} S = -16\pi a_1(\mu?), & T = \frac{8\pi}{c_W^2} a_0(\mu?) \end{bmatrix}$$

and similar if only loops $\longrightarrow \begin{bmatrix} S = \frac{(1-a^2)}{12\pi} \ln \frac{\mu^2}{m_h^2}, & T = -\frac{3(1-a^2)}{16\pi c_W^2} \ln \frac{\mu^2}{m_h^2} \end{bmatrix}$

•Otherwise, one may resource to models**:

 \rightarrow Resonances (lightest V + A)

→ UV-completion assumptions (high-energy constraints)

* Delgado,Dobado,Herrero,SC [in prep.] ** Pich, Rosell, SC '12, '13

- •A Higgs-like boson discovered at LHC two years ago
- •M_H=125.64 ± 0.35 GeV

- •Still many questions:
 - Spin? 0^+ most likely $[\theta^-, 1^\pm, 2^+]$
 - Couplings? Close to SM's

-Decay width, etc.

- SM Higgs? Compatible so far

[https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults#Animations

Observables!!

★ We need more observables

sensitive to small deviations in the couplings (e.g. $\Delta a = a - 1$)

• Precise & accurate theoretical calculation!!

★ Just eff. vertices → Not enough (dangerous)
 ★ Low-energy EFT's to relate observables
 ★ BOTH: counter-terms (couplings) + loops (logs)
 ★ Full computations (w/ finite parts)

Optimal Tool \rightarrow **EFT** (EW Chiral Lagrangians + h)

(small devs. + mass gap)

MOST PESIMISTIC SCENARIO:

NO BSM low-mass states

hWW coupling

Additional EFT considerations

Equivalence Theorem: 1.

E.g.
$$\begin{array}{ccc} \mathcal{M}(\gamma\gamma \to W_L^+ W_L^-) &\simeq & -\mathcal{M}(\gamma\gamma \to w^+ w^-) \\ \mathcal{M}(\gamma\gamma \to Z_L Z_L) &\simeq & -\mathcal{M}(\gamma\gamma \to zz) \end{array}$$

f

Pheno $\rightarrow m_h \sim m_{W,Z} \ll E$ (full calculation also possible)

2. Renormalizable R_{ξ} gauge: Landau gauge convenient ($m_{\omega \pm,z} = 0$)

(in practice we neglect m_{W} , m_z and m_h)

* Delgado, Dobado, Herrero, SC, JHEP1407 (2014) 149

also notice the subtlety^{*,**} $g^{(')} \sim m_{W,Z}/v \sim p/v$ [notice $e \sim p/v$ too]

* Buchalla, Catà, Krause '13

* Hirn,Stern '05

* Delgado, Dobado, Herrero, SC, JHEP1407 (2014) 149

** Urech '95

- (x) Apelquist, Bernard '80
- (x) Longhitano '80, '81
- (x) Herrero, Morales '95
- (x) Pich,Rosell,Sc '12 '13
- (x) Brivio et al. '13
- (x) Gavela, Kanshin, Machado, Saa '14, etc.

Consider the relevant ECLh Lagrangian

•EFT Lagrangian up to NLO [*i.e.* up to $O(p^4)$]: $\mathcal{L}_{\text{ECLh}} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_{\text{GF}} + \mathcal{L}_{\text{FP}}$

→NLO Lagrangian^{*,**}:

$$\mathcal{L}_{4} = a_{1} \operatorname{Tr}(U\hat{B}_{\mu\nu}U^{\dagger}\hat{W}^{\mu\nu}) + i a_{2} \operatorname{Tr}(U\hat{B}_{\mu\nu}U^{\dagger}[V^{\mu}, V^{\nu}]) - i a_{3} \operatorname{Tr}(\hat{W}_{\mu\nu}[V^{\mu}, V^{\nu}]) - c_{W} \frac{h}{v} \operatorname{Tr}(\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}) - c_{B} \frac{h}{v} \operatorname{Tr}(\hat{B}_{\mu\nu}\hat{B}^{\mu\nu}) + \dots$$

$$- \frac{c_{\gamma}}{2} \frac{h}{v} e^{2} A_{\mu\nu} A^{\mu\nu} + \dots$$

* Apelq

* Longhitano '80, '81

** Buchalla,Catà '12

** Alonso, Gavela, Merlo, Rigolin, Yepes '12

** Brivio,Corbett,Eboli,Gavela,Gonzalez–Fraile,Gonzalez–Garcia,Merlo,Rigolin '13 (list of operators in \mathcal{L}_4)

Counting, **loops & renormalization**

•In general, the O(p^d) Lagrangian has the symbolic form $(\chi=W,B,\pi,h)$, La la

$$\mathcal{L}_d = \sum_k f_k^{(d)} p^d \left(\frac{\chi}{v}\right)^{\kappa}$$

$$f_k^{(2)} \sim v^2$$
$$f_k^{(4)} \sim a_i$$
$$\dots$$

leading to a general scaling* of a diagram with $\begin{bmatrix}
\cdot L \ loops \\
\cdot E \ external \ legs \\
\cdot N_d \ vertices \ of \ \mathcal{I}_d
\end{bmatrix}$

$${\cal M} ~\sim~ \left(rac{{f p}^2}{{f v}^{{f E}-2}}
ight) ~\left(rac{{f p}^2}{16\pi^2 {f v}^2}
ight)^{f L} ~\prod_{f d} \left(rac{{f f}_k^{(f d)} {f p}^{(f d-2)}}{{f v}^2}
ight)^{f N}$$

[scaling of individual diagrams; cancellations & higher suppressions for the total amplitude]

• $O(p^d)$ loop divergence + $O(p^d)$ chiral coupling = UV-finite

* Weinberg '79 * Urech '95 **<u>E.g. W_LW_L-scat**:</u>** LO $O(p^2) \rightarrow \frac{p^2}{r^2}$ (tree) * Georgi, Manohar NPB234 (1984) 189 Buchalla, Catà, Krause '13 * Hirn.Stern '05 * Delgado, Dobado, Herrero, SC, JHEP1407 (2014) 149 NLO O(p⁴) \rightarrow a_i $\frac{\mathbf{p}^4}{\mathbf{v}^4}$ (tree) + $\frac{\mathbf{p}^4}{\mathbf{16}\pi^2\mathbf{v}^4}\left(\frac{1}{\epsilon} + \log\right)$ (1-loop) ** Espriu, Mescia, Yencho '13 ** Delgado, Dobado '13 J.J. Sanz Cillero 45/24The role of R in ECLh

Relevant ECLh Lagrangian for $\gamma \gamma \rightarrow W_1^{a} W_1^{b}$

•EFT Lagrangian up to NLO [*i.e.* up to $O(p^4)$]: $\mathcal{L}_{ECLh} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_{GF} + \mathcal{L}_{FP}$

→NLO Lagrangian^{*,**}:

$$\mathcal{L}_{4} = a_{1} \operatorname{Tr}(U\hat{B}_{\mu\nu}U^{\dagger}\hat{W}^{\mu\nu}) + i a_{2} \operatorname{Tr}(U\hat{B}_{\mu\nu}U^{\dagger}[V^{\mu}, V^{\nu}]) - i a_{3} \operatorname{Tr}(\hat{W}_{\mu\nu}[V^{\mu}, V^{\nu}]) \\ - c_{W} \frac{h}{v} \operatorname{Tr}(\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}) - c_{B} \frac{h}{v} \operatorname{Tr}(\hat{B}_{\mu\nu}\hat{B}^{\mu\nu}) + \dots \\ - \frac{c_{\gamma}}{2} \frac{h}{v} e^{2} A_{\mu\nu}A^{\mu\nu} + \dots$$

* Apelq

* Longhitano '80, '81

** Buchalla,Catà '12

** Alonso, Gavela, Merlo, Rigolin, Yepes '12

** Brivio,Corbett,Eboli,Gavela,Gonzalez–Fraile,Gonzalez–Garcia,Merlo,Rigolin '13 (list of operators in \mathcal{L}_4)

Related observables

	Observables	$\begin{array}{c} \mathbf{ECLh} \\ \mathbf{from} \ \mathcal{L}_2 \end{array}$	$egin{array}{c} \mathbf{couplings} \ \mathbf{from} \ \mathcal{L}_2 \end{array}$
•How can we determine these ECLh couplings? *	$\mathcal{M}(\gamma\gamma \to zz)$	a	c_{γ}^{r}
	$\mathcal{M}(\gamma\gamma\to\omega^+\omega^-)$	a	$c_{\gamma}^{r}, a_{1}^{r}, (a_{2}^{r} - a_{3}^{r})$
$\overbrace{-}{\longrightarrow}{\longrightarrow}{\longrightarrow}{\rightarrow}$	$\Gamma(h\to\gamma\gamma)$	a	c^r_γ
$W_3 \vee V \to B$ \longrightarrow	S-parameter	a	a_1^r
	$\gamma^* \to \omega^+ \omega^- \text{ EM-FF}$	a	$(a_{2}^{r}-a_{3}^{r})$
	$\gamma^* \to \gamma h \text{ EM-FF}$	_	c_γ

• OVERDETERMINATION → EFT PREDICTIVITY:

6 observables vs. 4 combinations of parameters $\{a, c_{\gamma}, a_{1}, (a_{2}-a_{3})\}$

* Delgado, Dobado, Herrero, SC '14

ECLh running at O(p⁴)

•This 6 observables overdetermine the 4 combinations of couplings a, c_{γ} , a_1 , (a_2-a_3)

and provide their running:

a=0

	ECLh	ECL ⁽⁺⁾ (Higgsless)
* $\Gamma_{a_1-a_2+a_3}$	0	0
* $\Gamma_{c_{\gamma}}$	0	-
* Γ_{a_1}	$-\frac{1}{6}(1-a^2)$	$-\frac{1}{6}$
* $\Gamma_{a_2-a_3}$	$-\frac{1}{6}(1-a^2)$	$-\frac{1}{6}$
** Γ_{a_4}	$\frac{1}{6}(1-a^2)^2$	$\frac{1}{6}$
** Γ_{a_5}	$\frac{1}{8}(b-a^2)^2 + \frac{1}{12}(1-a^2)^2$	$\frac{1}{12}$

* Delgado, Dobado, Herrero, SC '14

** Espriu, Mescia, Yencho '13

** Delgado,Dobado '13

(+) Herrero, Morales '95

(x) In agreement with Ametller, Talavera '14

J.J. Sanz Cillero

The role of R in ECLh 48/24

Oblique EWPO's

✓ Universal oblique corrections via the EW boson self-energies (transverse in the Landau gauge) * , +

$$\mathcal{L}_{\text{vac-pol}} = -\frac{1}{2} W_{\mu}^{3} \Pi_{33}^{\mu\nu}(q^{2}) W_{\nu}^{3} - \frac{1}{2} B_{\mu} \Pi_{00}^{\mu\nu}(q^{2}) B_{\nu} - W_{\mu}^{3} \Pi_{30}^{\mu\nu}(q^{2}) B_{\nu} - W_{\mu}^{+} \Pi_{WW}^{\mu\nu}(q^{2}) W_{\nu}^{-},$$
with the subtracted definition,

$$\Pi_{30}(q^{2}) = q^{2} \widetilde{\Pi}_{30}(q^{2}) + \frac{g^{2} \tan \theta_{W}}{4} v^{2}$$

$$\mathbf{e}_{1} = \frac{1}{m_{W}^{2}} \left(\Pi_{33}(\mathbf{0}) - \Pi_{WW}(\mathbf{0}) \right) \quad \stackrel{**}{=} \frac{\mathbf{Z}^{(+)}}{\mathbf{Z}^{(0)}} - 1$$

$$\mathbf{e}_{3} = \frac{1}{\tan \theta_{W}} \widetilde{\Pi}_{30}(\mathbf{0})$$

$$\overline{\epsilon_{1}^{8M}} \approx -\frac{3g^{2}}{32\pi^{2}} \log \frac{M_{H}}{M_{Z}} + \text{const}, \quad \overline{\epsilon_{3}^{8M}} \approx \frac{g^{2}}{96\pi^{2}} \log \frac{M_{H}}{M_{Z}} + \text{const}'$$

$$\overline{T} = \frac{4\pi}{g'^{2} \cos^{2} \theta_{W}} \left(e_{1} - e_{1}^{SM} \right)$$

$$S = \frac{16\pi}{g^{2}} \left(e_{3} - e_{3}^{SM} \right),$$

$$\stackrel{* \text{Peskin and Takeuchi '91, '92} * \frac{\text{softter}}{\text{HEP EWWG}} + \frac{\text{const}}{\text{EP EWWG}}$$

S-parameter sum-rule *

✓ In this work, dispersive representation introduced by Peskin and Takeuchi*.

$$S = \frac{16}{g^2 \tan \theta_W} \int_0^\infty \frac{\mathrm{dt}}{t} \left(\mathrm{Im}\widetilde{\Pi}_{30}(t) - \mathrm{Im}\widetilde{\Pi}_{30}(t)^{\mathrm{SM}} \right)$$
$$= \int_0^\infty \frac{\mathrm{dt}}{t} \left(\frac{16}{g^2 \tan \theta_W} \mathrm{Im}\widetilde{\Pi}_{30}(t) - \frac{1}{12\pi} \left[1 - \left(1 - \frac{m_{H,ref}^2}{t} \right)^3 \theta(t - m_{H,ref}^2) \right] \right)$$

- \rightarrow The convergence of the integral requires $\rho_{\mathbf{S}}(\mathbf{t}) \equiv \frac{1}{\pi} \mathrm{Im} \widetilde{\Pi}_{\mathbf{30}}(\mathbf{t}) \stackrel{\mathbf{t} \to \infty}{\longrightarrow} \mathbf{0}$
- \rightarrow S-parameter defined for an arbitrary reference value m_{H,ref}
- \rightarrow Higher threshold cuts in Im Π_{30} will be suppressed in the dispersive integral

→ At tree-level:
$$S_{\rm LO} = 4\pi \left(\frac{F_V^2}{M_V^2} - \frac{F_A^2}{M_A^2} \right)$$

* Peskin and Takeuchi '92.

High-energy constraints

- ✓ We will have 7 resonance parameters: F_V , G_V , F_A , κ_W , λ_1^{SA} , M_V and M_A .
- ✓ The number of unknown couplings can be reduced by using short-distance information.
- ✓ In contrast with the QCD case, we ignore the underlying dynamical theory.

0) Once-subtracted dispersion* relation for
$$\Pi_{30}(s) = \frac{g^2 \tan \theta_W}{4} s \left[\Pi_{VV}(s) - \Pi_{AA}(s) \right]$$

✓ Once-subtract. dispersive relation from tree+1-loop spectral function** $\pi\pi$, $h\pi$... (higher cuts suppressed) $\Pi_{30}(s) = \Pi_{30}(0) + \frac{s}{\pi} \int_0^\infty \frac{\mathrm{d}t}{t (t-s)} \mathrm{Im}\Pi_{30}(t)$

 \checkmark F_R^r and M_R^r are *renormalized* couplings which define the resonance poles at the one-loop level.

$$|\Pi_{30}(s)|_{\rm NLO} = \frac{g^2 \tan \theta_W}{4} s \left(\frac{v^2}{s} + \frac{F_V^{r\,2}}{M_V^{r\,2} - s} - \frac{F_A^{r\,2}}{M_A^{r\,2} - s} + \overline{\Pi}(s)\right)$$

* Peskin, Takeuchi '90, '91

** Pich, Rosell, SC '08

i) Weinberg Sum Rules (WSR)*
$$\Pi_{30}(s) = \frac{g^2 \tan \theta_W s}{4} [\Pi_{VV}(s) - \Pi_{AA}(s)]$$

 $= \frac{g^2 v^2 \tan \theta_W}{4} + s \widetilde{\Pi}_{30}(s)$

* Bernard et al.'75.

** Pich, Rosell, SC '08

ii) Additional short-distance constraints

** Ecker et al.'89

*** Pich, Rosell, SC '12

* Barbieri et al.'08 * Guo, Zheng, SC '07 * Pich, Rosell, SC '11

S and T at LO

S-parameter *

* New physics in the difference between the Z self-energies at $q^2=M_Z^2$ and $q^2=0$.

$$\underbrace{\longrightarrow W^{3}B \ correlator}_{M^{3}} (transverse in Landau gauge)$$

$$\underbrace{\longrightarrow W^{3}}_{M^{3}} \underbrace{\longrightarrow V, A}_{M^{3}} \underbrace{\longrightarrow V, A}_{M^{$$

T-parameter *

• It parametrizes the Custodial Symmetry breaking $(W^+W^- vs. ZZ)$

* Peskin and Takeuchi '92.

S and T at NLO

 \rightarrow <u>W³B correlator</u>*

→<u>NGB self-energy</u> *

- * Barbieri et al.'08
- * Cata and Kamenik '10
- * Orgogozo, Rychkov '11, '12

High-energy constraints + Dispersion relations

 \rightarrow <u>W³B correlator</u> \rightarrow S-parameter sum-rule (+)

$$S = \frac{16}{g^2 \tan \theta_W} \int_0^\infty \frac{\mathrm{dt}}{t} \left[\rho_S(t) - \rho_S(t)^{\mathrm{SM}} \right]$$

The role of R in ECLh

**** *

$$\rho_{\mathbf{S}}(\mathbf{s}) = \frac{1}{\pi} \mathrm{Im} \widetilde{\Pi}_{30}(\mathbf{s}) \begin{bmatrix} \rho_{S}|_{\pi\pi} = \frac{gg'\,\theta(s)}{192\pi} \left(1 + \frac{F_{V}G_{V}}{v^{2}} \frac{s}{M_{V}^{2} - s}\right)^{2} & \stackrel{\text{VFF}}{\longrightarrow} & \frac{gg'\,\theta(s)}{192\pi} \left(\frac{M_{V}^{2}}{M_{V}^{2} - s}\right)^{2} \\ \rho_{S}|_{S\pi} = -\frac{gg'\,\kappa_{W}^{2}\,\sigma_{S\pi}^{3}\theta(s - m_{S}^{2})}{192\pi} \left(1 + \frac{F_{A}\lambda_{1}^{SA}}{\kappa_{W}v} \frac{s}{M_{A}^{2} - s}\right)^{2} & \stackrel{\text{VFF}}{\longrightarrow} & -\frac{gg'\,\kappa_{W}^{2}\,\sigma_{S\pi}^{3}\theta(s - m_{S}^{2})}{192\pi} \left(\frac{M_{A}^{2}}{M_{A}^{2} - s}\right)^{2} \end{bmatrix}$$

→<u>NGB self-energies</u> → Convergent dispersion relation for T (×) for the lightest absorptive diagrams with $B\pi + BS$

$$T = \frac{4}{g'^2 \cos^2 \theta_W} \int_0^\infty \frac{\mathrm{dt}}{t^2} \left[\rho_T(t) - \rho_T(t)^{\mathrm{SM}} \right]$$

$$\rho_{\mathbf{T}}(\mathbf{s}) = \frac{1}{\pi} \mathrm{Im}[\mathbf{\Sigma}(\mathbf{s})^{(0)} - \mathbf{\Sigma}(\mathbf{s})^{(+)}] \left[\begin{smallmatrix} \rho_{\mathbf{T}}(\mathbf{s}) |_{\mathbf{B}\pi} & \xrightarrow{\mathbf{s} \to \infty} \\ \frac{3g'^2 \kappa_W^2 \mathbf{s}}{64\pi^2} \left(1 - \frac{\mathbf{F}_{\mathbf{A}} \lambda_1^{\mathrm{SA}}}{\kappa_W \mathbf{v}}\right)^2 + \mathcal{O}(\mathbf{s}^0)$$
* Orgogozo, Rychkov '11

J.J. Sanz Cillero
$$\mathsf{Trevel of B in ECLh} \quad \mathsf{57/24}$$

J.J. Sanz Cillero

* O

1st + 2nd WSR determination:

- ✓ 7 parameters (only lowest cuts $\pi\pi$ +h π): $M_V, M_A, F_V, F_A \& G_V, \kappa_W, \lambda_1^{SA}$
- \checkmark 2 + 2 + 1 constraints: $F_V, F_A \& M_A, (F_V G_V), (F_A \lambda_1^{SA}) \longrightarrow$ 2 free parameters: M_V, κ_W

Only 1st WSR lower bound for M_V<M_A:

- 6 parameters (only lowest cuts $\pi\pi$ +h π / B π +Bh): M_V, M_A, F_V & (F_VG_V), κ_W , (F_A λ_1 ^{SA})
- ✓ 1 + 1 + 1 constraints: $F_V \& (F_V G_V), (F_A \lambda_1^{SA})$ ====== 3 free parameters: M_V, M_A, κ_W

LO results***

i.i) 1st and 2nd WSRs **

$$S_{\rm LO} = \frac{4\pi v^2}{M_V^2} \left(1 + \frac{M_V^2}{M_A^2} \right)$$
$$\frac{4\pi v^2}{M_V^2} < S_{\rm LO} < \frac{8\pi v^2}{M_V^2}$$

$$S_{\rm LO} = 4\pi \left(\frac{F_V^2}{M_V^2} - \frac{F_A^2}{M_A^2} \right) \,, \qquad T_{\rm LO} = 0$$

i.ii) Only 1st WSR *** (lower bound for $M_A > M_V$)

$$S_{\rm LO} = 4\pi \left\{ \frac{v^2}{M_V^2} + F_A^2 \left(\frac{1}{M_V^2} - \frac{1}{M_A^2} \right) \right\}$$
$$S_{\rm LO} > \frac{4\pi v^2}{M_V^2}$$

* Gfitter

* LEP EWWG

* Zfitter

** Peskin and Takeuchi '92. *** Pich, Rosell, SC '12

(M_V > 3.6 TeV if T_{LO}=0 also considered)

NLO results:* 1st and 2nd WSRs in Π_{30}

(asymptotically-free theories)

* Pich, Rosell, SC '12, '13

NLO Results:* Only 1st WSRs in Π_{30}

(walking & conformal TC, extra dimensions,...)**

$$T = \frac{3}{16\pi\cos^2\theta_W} \left[1 + \log\frac{m_H^2}{M_V^2} - \kappa_W^2 \left(1 + \log\frac{m_{S_1}^2}{M_A^2} \right) \right]$$

$$S > \left[\frac{4\pi v^2}{M_V^2} + \frac{1}{12\pi} \left[\left(\ln\frac{M_V^2}{m_H^2} - \frac{11}{6} \right) - \kappa_W^2 \left(\log\frac{M_A^2}{m_{S_1}^2} - \frac{17}{6} + \frac{M_A^2}{M_V^2} \right) \right]$$

[terms $O(m_s^2/M_{V,A}^2)$ neglected]

 \checkmark Assumption $M_A > M_V$ for the S lower-bound

• Only 1st WSR at LO and NLO + $\pi\pi$ -VFF:

 \rightarrow Free parameters: M_V, M_A and κ_W

* Pich,Rosell,SC '12, '13

** Orgogozo, Rychkov '11

NLO Results:* Only 1st WSRs in Π_{30}

very different from the SM if one requires large (unnatural) splittings

* Pich,Rosell,SC '12, '13

** Orgogozo,Rychkov '11

NLO Results:* Only 1st WSRs in Π_{30}

(degenerate

J.J. Sanz Cillero

* Orgogozo, Rychkov '11

BACKUP PLOTS

J.J. Sanz Cillero

The role of R in ECLh 64/24

BACKUP PLOTS

Further comments:

✓ 1< M_A/M_V < 2 yields M_V > 1.5 TeV, κ_W ∈ [0.84, 1.30]

✓ The limit $\kappa_W \rightarrow 0$ only reached for $M_V/M_A \rightarrow 0$

 $\kappa_{W}=0$ incompatible with data (independently of whether 1st+2nd WSR's or just 1st WSR)

Calculation valid for particular models with this symmetry:

E.g., in SO(5)/SO(4) with $\kappa_W = \cos\theta < 1$ *

- * Agashe, Contino, Pomarol '05
- * Barbieri et al '12
- * Marzocca, Serone, Shu '12 ...

Conclusions

Framework (I): - SU(2)_L \otimes SU(2)_R / SU(2)_{L+R} EFT w/ NGB's + <u>Higgs</u>

[ECL + h] - Power counting for individual contributions (loops + tree)

- Important cancellations in the full amplitude (stronger suppression $4\pi f$)

Framework (II): - NGB's + Higgs + Resonances

[ECL + h + V + A] - High-energy constraints + 1 loop dispersive calculation

i) <u>ECL + h</u>:

• $\gamma\gamma \rightarrow w^a w^b$ up to NLO within ECLh: χ power counting \rightarrow (NLO tree ~ NLO loops)

- $a_1, a_2, a_3, c_{\gamma}$ running and RGI combinations
- Combine $\gamma\gamma$ -scattering + S-parameter + $\Gamma(h \rightarrow \gamma\gamma)$ + w⁺w⁻ γ^* VFF + h $\gamma\gamma^*$ TFF

BOTH $\gamma\gamma \rightarrow zz$ & $\gamma\gamma \rightarrow w+w-$ to separate c_{γ} & $(a_1-a_2+a_3)$

- Various possible signal origins: $a \neq 1$ or $c_{\gamma} \neq 0$ or $(a_1 a_2 + a_3) \neq 0$
- Photon polarizations may allow a clean separation of BSM effects:
 - UNPOLARIZED → Potential BSM signal in some scenarios
 POLARIZED → SM bg decreasing & BSM signal enhancement

•Use cuts to maximize the BSM signal and decrease SM bg

• Look for BSM in $\gamma\gamma \rightarrow Z_L Z_L$ better than $\gamma\gamma \rightarrow W_L^+ W_L^-$: similar BSM signal, less SM

ii) <u>ECL + h + V + A</u>:

✓ 1st + 2nd WSR's: Tiny splitting (68% CL) 0.97 < (M_V/M_A)² = κ_W < 1, M_V > 5.4 TeV
 ✓ Only 1st WSR: For a moderate mass splitting M_A ~ M_V (lighter), κ_W ~ 1, M_V > 1 TeV

FINAL CONCLUSIONS:

- Resonances perfectly allowed by S & T at $M_R \sim 4\pi v \approx 3$ TeV
- Resonances perfectly compatible with LHC $\kappa_W \approx 1$
- Conclusions applicable to more specific models (e.g. SO(5)/SO(4) MCHM)

Constraining strongly-coupled models by considering S and T

- ✓ Strongly coupled scenarios are allowed by the current experimental data.
- ✓ The Higgs-like boson must have a WW coupling close to the SM one (κ_W =1):
 - With the 2nd WSR κ_W in [0.94, 1] at 95% CL
 - ✓ For larger departures from κ_W =1 the 2nd WSR must be dropped.
 - ✓ A moderate resonance-mass splitting implies $\kappa_W \approx 1$
- ✓ Resonance masses above the TeV scale:
 - ✓ At LO $M_A > M_V > 1.5$ TeV at 95% CL.
 - ✓ With the 2nd WSR M_V > 4 TeV at 95% CL.
 - \checkmark With only the 1st WSR M_V < 1 TeV implies large resonance-mass splitting.

Determining the LECs in terms of resonance couplings

- ✓ Matching the Resonance Theory and the Electroweak Effective Theory.
- ✓ Similar to the QCD case.
- ✓ Short-distance constraints are fundamental.

Deviations from SM: BSM's

✤ Different models → Different deviations from SM

 $(a = \kappa_W = \kappa_V)$

•O(p²) Lagrangian in particular models:

$$a^{2} = b = 0$$

$$a^{2} = b = 1$$

$$a^{2} = 1 - \frac{v^{2}}{f^{2}}, \quad b = 1 - \frac{2v^{2}}{f^{2}}$$

$$a^{2} = b = \frac{v^{2}}{\hat{f}^{2}},$$

(Higgsless ECL) (SM), (SO(5)/SO(4) MCHM),

•O(p⁴) Lagrangian in particular models: $c_W = c_B = c_\gamma = ... = 0$ $a_i = c_W = c_B = c_\gamma = ... = 0$

(Higgsless ECL), (SM),

Summary of all searches for coupling deviations

C. Moratti [ATLAS]

LHC prospects for next years

<u>A Warm-up example:</u>

S & T parameters at O(p⁴)

•Do oblique parameters exclude strongly-coupled models?

The EWPO Oblique Parameters

don't exclude them at all

* Peskin, Takeuchi '92

→<u>W³B correlator*</u>

J.J. Sanz Cillero

The role of R in ECLh 77/24

• More observables* can over-constrain the $a_i(\mu)$ BUT not (S,T) alone!!!

• Taking just tree-level is incomplete
$$\longrightarrow \begin{bmatrix} S = -16\pi a_1(\mu?), & T = \frac{8\pi}{c_W^2} a_0(\mu?) \end{bmatrix}$$

and similar if only loops $\longrightarrow \begin{bmatrix} S = \frac{(1-a^2)}{12\pi} \ln \frac{\mu^2}{m_h^2}, & T = -\frac{3(1-a^2)}{16\pi c_W^2} \ln \frac{\mu^2}{m_h^2} \end{bmatrix}$

•Otherwise, one may resource to models**:

 \rightarrow Resonances (lightest V + A)

→ UV-completion assumptions (high-energy constraints)

* Delgado, Dobado, Herrero, SC [in prep.] ** Pich, Rosell, SC '12, '13

Counting,

loops & renormalization

•In general, the O(p^d) Lagrangian has the symbolic form $(\chi=W,B,\pi,h)$, 1

$$\mathcal{L}_d = \sum_k f_k^{(d)} p^d \left(\frac{\chi}{v}\right)^{\kappa}$$

$$\begin{split} &\mathcal{K} \\ &\text{leading to a general scaling* of a diagram with} \\ &\mathcal{M} \sim \left(\frac{p^2}{v^{E-2}}\right) \left(\frac{p^2}{16\pi^2 v^2}\right)^L \ \prod_d \left(\frac{f_k^{(d)} p^{(d-2)}}{v^2}\right)^{N_d} \end{split} \\ \end{split}$$

[scaling of individual diagrams; cancellations & higher suppressions for the total amplitude]

• $O(p^d)$ loop divergence + $O(p^d)$ chiral coupling = UV-finite

* Weinberg '79 * Urech '95 **<u>E.g. W_LW_L-scat**:</u>** LO $O(p^2) \rightarrow \frac{p^2}{r^2}$ (tree) * Buchalla,Catà,Krause '13 * Hirn, Stern '05 Delgado, Dobado, Herrero, SC '14 NLO O(p⁴) \rightarrow a_i $\frac{p^4}{v^4}$ (tree) + $\frac{p^4}{16\pi^2 v^4} \left(\frac{1}{\epsilon} + \log\right)$ (1-loop) ** Filipuzzi, Portoles, Ruiz-Femenia '12 ** Espriu, Mescia, Yencho '13 ** Delgado, Dobado '13 J.J. Sanz Cillero The role of R in ECLh 79/24

• $O(p^d)$ loop divergence + $O(p^d)$ chiral coupling = UV-finite

•In OUR case, renormalization at O(p4):

$$a_1, a_2, a_3, c_\gamma \to a_1^r, a_2^r, a_3^r, c_\gamma^r$$

$$C^{r}(\mu) = C^{(B)} + \frac{\Gamma_{C}}{32\pi^{2}} \frac{1}{\hat{\epsilon}}$$
$$\frac{dC^{r}}{d\ln\mu} = -\frac{\Gamma_{C}}{16\pi^{2}}$$

•Naively, our EFT range of validity given by

$$\mathbf{p^2} \ll \min\left\{\mathbf{16}\pi^2\mathbf{v^2}\,,\, \frac{\mathbf{v^2}}{\mathbf{a_i}}
ight\}$$

•Previous May: WW-scattering

EFTs and the composite option

• Large mass gap + small coupling deviations from SM:

An appropriate tool \rightarrow Effective theories:

Non-linear "Chiral" Lagrangians

w/ EW Goldstones +Higgs

• Strongly interacting models? Composite states?

...

Technicolor (or relatives, heirs) Composite Higgs [e.g., SO(5)/SO(4)] Extra Dimensions (also)

- * Arkani-Hamed et al. '01
- * Csaki et al. '04
- * Cacciapaglia et al. '04
- Agashe,Contino,Pomarol '05
- * Hirn,Sanz '06 ...

Final comment on EFT's validity:

or "How EFT break-down can mean good news"

•Criticism on EFT's * 🗲

* They break down beyond some energy

* Is it justified to use them at "many"-TeV colliders?

•Reply:

* EFT's provide an expansion $\mathcal{M} \approx 1 + E/\Lambda + E^2/\Lambda^2 +...$ (A fully unknown a priori)

* EFT breaks down when $LO \sim NLO \sim NNLO \dots$

* Large NLO effects **are good news!!**
→ Large BSM effects

* Just cut-off regions with NLO \geq LO (e.g. large p_T , large $M_{\gamma\gamma}$...)

(NO ad-hoc "vertex form-factors", please;

it spoils all you did Ok with the EFT)

* Biekötter, Knochel, Krämer, Liu, Riva, [1406.7320]

ii) Additional short-distance constraints

ii.iii) $W_L W_L \rightarrow W_L W_L$ scattering*

(NOT CONSIDERED HERE, studied in a previous work***)

 $[\kappa_W > 0 + WSRs + VFF] \rightarrow M_V/M_A > 0.8$

$$rac{3 \mathrm{G}_{\mathrm{V}}^2}{\mathrm{v}^2} + \kappa_{\mathrm{W}}^2 = 1$$

** Ecker et al.'89

*** Pich, Rosell, SC '12

* Barbieri et al.'08 * Guo, Zheng, SC '07

SC '12 * Pich, Rosell, SC '11

1. Motivation

i) The Standard Model (SM) provides an extremely succesful description of the electroweak and strong interactions.

ii) A key feature is the particular mechanism adopted to break the electroweak gauge symmetry to the electroweak subgroup, $SU(2)_L \times U(1)_Y \rightarrow U(1)_{QED}$, so that the W and Z bosons become massive. The LHC discovered a new particle around 125 GeV*.

iii) What if this new particle is not a standard Higgs boson? Or a scalar resonance? We should look for alternative mechanisms of mass generation.

iv) Strongly-coupled models: usually they do contain resonances. Similar to Chiral Symmetry Breaking in QCD.

v) They should fulfilled the existing phenomenological tests.

vi) They can be used to estimate the Low Energy Couplings (LECs) of the Electroweak Effective Theory

* CMS and ATLAS Collaborations.

** Peskin and Takeuchi '92.

Similarities to Chiral Symmetry Breaking in QCD

i) Neglecting the g' coupling, the Lagrangian is invariant under global $SU(2)_L \times SU(2)_R$ transformations. The Electroweak Symmetry Breaking (EWSB) turns out to be $SU(2)_L \times SU(2)_R$ \Rightarrow $SU(2)_{L+R}$ (custodial symmetry).

ii) Absolutely similar to the Chiral Symmetry Breaking (ChSB) occuring in QCD. So the same pion Lagrangian describes the Goldstone boson dynamics associated with the EWSB, being replaced f_{π} by v=1/ $\sqrt{(2G_F)}$ =246 GeV. Similar to Chiral Perturbation Theory (ChPT)*^.

$$\Delta \mathcal{L}_{\text{ChPT}}^{(2)} = \frac{f_{\pi}^2}{4} \left\langle u_{\mu} u^{\mu} \right\rangle \quad \rightarrow \quad \Delta \mathcal{L}_{\text{EW}}^{(2)} = \frac{v^2}{4} \left\langle u_{\mu} u^{\mu} \right\rangle$$

iii) We can introduce the resonance fields needed in strongly-coupled models in a similar way as in ChPT: Resonance Chiral Theory (RChT)**.

 $\checkmark \text{ Note the implications of a naïve rescaling from QCD to EW:} \begin{cases} f_{\pi} = 0.090 \,\text{GeV} \longrightarrow v = 0.246 \,\text{TeV} \\ M_{\rho} = 0.770 \,\text{GeV} \longrightarrow M_{V} = 2.1 \,\text{TeV} \\ M_{a1} = 1.260 \,\text{GeV} \longrightarrow M_{A} = 3.4 \,\text{TeV} \end{cases}$

iv) The estimations of the S and T parameters in strongly-coupled EW models are similar to the determination of L_{10} and $f_{\pi+}^2 - f_{\pi0}^2$ in ChPT***.

v) The determination of the Electroweak LECs is similar to the ChPT case**.

* Weinberg '79	[^] Dobado, Espriu and Herrero '91	**Ecker et al. '89	*** Pich, IR and Sanz-Cillero '08.
* Gasser and Leutwyler '84 '85	[^] Espriu and Herrero '92	** Cirigliano et al. '06	
* Bijnens et al. '99 '00	^Herrero and Ruiz-Morales '94		

The Impact of Resonances in the Electroweak Effective Lagrangian, I. 189/11/ The role of R in ECLh 86/24

What?

Why?

$$\begin{split} U(w^{\pm}, z) &= 1 + i w^{a} \tau^{a} / v + \mathcal{O}(w^{2}) \in SU(2)_{L} \times SU(2)_{R} / SU(2)_{L+R}, \\ D_{\mu}U &= \partial_{\mu}U + i \hat{W}_{\mu}U - i U \hat{B}_{\mu}, \\ \hat{W}_{\mu\nu} &= \partial_{\mu}\hat{W}_{\nu} - \partial_{\nu}\hat{W}_{\mu} + i[\hat{W}_{\mu}, \hat{W}_{\nu}] , \quad \hat{B}_{\mu\nu} = \partial_{\mu}\hat{B}_{\nu} - \partial_{\nu}\hat{B}_{\mu}, \\ \hat{W}_{\mu} &= g \vec{W}_{\mu}\vec{\tau}/2 , \quad \hat{B}_{\mu} = g' B_{\mu}\tau^{3}/2, \\ V_{\mu} &= (D_{\mu}U) U^{\dagger} , \quad \mathcal{T} = U \tau^{3} U^{\dagger}, \end{split}$$

How?

$$\left(\partial_{\mu} - i\hat{W}_{\mu}P_{L} - i\hat{B}_{\mu}P_{R} - ig'y_{1}X_{\mu}\right)\psi$$

$$\begin{aligned} d_{\mu}\xi &= d_{\mu}^{R}\xi_{R} + d_{\mu}^{L}\xi_{L} ,\\ d_{\mu}^{L}\xi_{L} &= \left(\partial_{\mu} + \Gamma_{\mu}^{L} - i\,g'\,y_{1}\,X_{\mu}\right)\,\xi_{L} &= u_{L}^{\dagger}\left[\left(\partial_{\mu} - i\hat{W}_{\mu} - i\,g'\,y_{1}\,X_{\mu}\right)\,\psi_{L}\right]\\ d_{\mu}^{R}\xi_{R} &= \left(\partial_{\mu} + \Gamma_{\mu}^{R} - i\,g'\,y_{1}\,X_{\mu}\right)\,\xi_{R} &= u_{R}^{\dagger}\left[\left(\partial_{\mu} - i\hat{B}_{\mu} - i\,g'\,y_{1}\,X_{\mu}\right)\,\psi_{R}\right]\end{aligned}$$

* Buchalla,Catà,Krause '13

* Hirn,Stern '05

Consider the relevant ECLh Lagrangian

•EFT Lagrangian up to NLO [*i.e.* up to $O(p^4)$]: $\mathcal{L}_{\text{ECLh}} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_{\text{GF}} + \mathcal{L}_{\text{FP}}$

→NLO Lagrangian^{*,**}:

$$\mathcal{L}_{4} = a_{1} \operatorname{Tr}(U\hat{B}_{\mu\nu}U^{\dagger}\hat{W}^{\mu\nu}) + i a_{2} \operatorname{Tr}(U\hat{B}_{\mu\nu}U^{\dagger}[V^{\mu}, V^{\nu}]) - i a_{3} \operatorname{Tr}(\hat{W}_{\mu\nu}[V^{\mu}, V^{\nu}]) \\ - c_{W} \frac{h}{v} \operatorname{Tr}(\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}) - c_{B} \frac{h}{v} \operatorname{Tr}(\hat{B}_{\mu\nu}\hat{B}^{\mu\nu}) + \dots \\ - \frac{c_{\gamma}}{2} \frac{h}{v} e^{2} A_{\mu\nu}A^{\mu\nu} + \dots$$

* Apelq * Longhitano '80, '81

** Buchalla,Catà '12

** Alonso, Gavela, Merlo, Rigolin, Yepes '12

** Brivio,Corbett,Eboli,Gavela,Gonzalez–Fraile,Gonzalez–Garcia,Merlo,Rigolin '13 (list of operators in \mathcal{L}_4)

Counting, **loops & renormalization**

•In general, the O(p^d) Lagrangian has the symbolic form $(\chi=W,B,\pi,h)$, La la

$$\mathcal{L}_d = \sum_k f_k^{(d)} p^d \left(\frac{\chi}{v}\right)^{\kappa}$$

$$f_k^{(2)} \sim v^2$$
$$f_k^{(4)} \sim a_i$$
$$\dots$$

leading to a general scaling* of a diagram with $\begin{bmatrix}
\cdot L \ loops \\
\cdot E \ external \ legs \\
\cdot N_d \ vertices \ of \ \mathcal{I}_d
\end{bmatrix}$

$$\mathcal{M}~\sim~\left(rac{\mathbf{p^2}}{\mathbf{v^{E-2}}}
ight)~\left(rac{\mathbf{p^2}}{\mathbf{16}\pi^2\mathbf{v^2}}
ight)^{\mathbf{L}}~\prod_{\mathbf{d}}\left(rac{\mathbf{f_k^{(d)}p^{(d-2)}}}{\mathbf{v^2}}
ight)^{\mathbf{N}}$$

[scaling of individual diagrams; cancellations & higher suppressions for the total amplitude]

• $O(p^d)$ loop divergence + $O(p^d)$ chiral coupling = UV-finite

* Weinberg '79 * Urech '95 **<u>E.g. W_LW_L-scat**:</u>** LO $O(p^2) \rightarrow \frac{p^2}{r^2}$ (tree) * Georgi, Manohar NPB234 (1984) 189 Buchalla, Catà, Krause '13 * Hirn.Stern '05 * Delgado, Dobado, Herrero, SC, JHEP1407 (2014) 149 NLO O(p⁴) \rightarrow a_i $\frac{\mathbf{p}^4}{\mathbf{v}^4}$ (tree) + $\frac{\mathbf{p}^4}{\mathbf{16}\pi^2\mathbf{v}^4}\left(\frac{1}{\epsilon} + \log\right)$ (1-loop) ** Espriu, Mescia, Yencho '13 ** Delgado, Dobado '13 89/24 The role of R in ECLh

BOSONIC SECTOR

$$\hat{W}_{\mu\nu} = \partial_{\mu}\hat{W}_{\nu} - \partial_{\nu}\hat{W}_{\mu} - i[\hat{W}_{\mu}, \hat{W}_{\nu}], \qquad \hat{B}_{\mu\nu} = \partial_{\mu}\hat{B}_{\nu} - \partial_{\nu}\hat{B}_{\mu} - i[\hat{B}_{\mu}, \hat{B}_{\nu}], D_{\mu}U = \partial_{\mu}U - i\hat{W}_{\mu}U + iU\hat{B}_{\mu}, u^{\mu} = iu_{R}^{\dagger}(\partial_{\mu} - i\hat{B}_{\mu})u_{R} - iu_{L}^{\dagger}(\partial_{\mu} - i\hat{W}_{\mu})u_{L} = iu(D^{\mu}U)^{\dagger}u, f_{\pm}^{\mu\nu} = u_{L}^{\dagger}\hat{W}^{\mu\nu}u_{L} \pm u_{R}^{\dagger}\hat{B}^{\mu\nu}u_{R}.$$

$$\begin{split} \hat{W}_{\mu} &= -g \frac{\vec{\sigma}}{2} \vec{W}_{\mu} , \qquad \hat{B}_{\mu} = -g' \frac{\sigma^{3}}{2} B_{\mu} \\ \nabla_{\mu} \mathcal{X} &= \partial_{\mu} \mathcal{X} + [\Gamma_{\mu}, \mathcal{X}] , \qquad \Gamma_{\mu} = \frac{1}{2} \Gamma_{\mu}^{R} + \frac{1}{2} \Gamma_{\mu}^{L} , \\ \Gamma_{\mu}^{L} &= u_{L}^{\dagger} (\partial_{\mu} - i \hat{W}_{\mu}) u_{L} , \qquad \Gamma_{\mu}^{R} = u_{R}^{\dagger} (\partial_{\mu} - i \hat{B}_{\mu}) u_{R} \end{split}$$

Full Higgsless result (Longhitano's Ops.)

• But it is more instructive to focus on a case (full R Lagrangian in *)

$$\mathcal{L}_{\mathbf{V}} = \frac{F_V}{2\sqrt{2}} \langle V_{\mu\nu} f_+^{\mu\nu} \rangle + \frac{iG_V}{2\sqrt{2}} \langle V_{\mu\nu} [u^{\mu}, u^{\nu}] \rangle + \frac{F_A}{2\sqrt{2}} \langle A_{\mu\nu} f_-^{\mu\nu} \rangle$$

• Integrate out V and A: $\mathcal{L}_{4} \supset \frac{1}{4}a_{1}\langle f_{+}^{\mu\nu}f_{+\mu\nu} - f_{-}^{\mu\nu}f_{-\mu\nu} \rangle \\
+ \frac{i}{2}(a_{2} - a_{3})\langle f_{+}^{\mu\nu}[u_{\mu}, u_{\nu}] \rangle + \frac{i}{2}(a_{2} + a_{3})\langle f_{-}^{\mu\nu}[u_{\mu}, u_{\nu}] \rangle \\
+ a_{4}\langle u_{\mu}u_{\nu} \rangle \langle u^{\mu}u^{\nu} \rangle + a_{5}\langle u_{\mu}u^{\mu} \rangle^{2} \\
+ \frac{1}{2}H_{1}\langle f_{+}^{\mu\nu}f_{+\mu\nu} + f_{-}^{\mu\nu}f_{-\mu\nu} \rangle + \widetilde{H}_{1}\langle f_{+}^{\mu\nu}f_{-\mu\nu} \rangle.$

$$a_1 = -\frac{F_V^2}{4M_V^2} + \frac{F_A^2}{4M_A^2}, \qquad (a_2 - a_3) = -\frac{F_V G_V}{2M_V^2}, \qquad a_4 = -a_5 = \frac{G_V^2}{4M_V^2}, \qquad H_1 = -\frac{F_V^2}{8M_V^2} - \frac{F_A^2}{8M_A^2},$$

^{*} Pich,Rosell,Santos,SC,1501.07249 [hep-ph] (proceedings); forthcoming

Higgs couplings

•
$$\kappa_{V}$$
: h \rightarrow WW, ZZ (κ_{V}^{SM} =1)
• κ_{F} : h \rightarrow f \overline{f} (κ_{F}^{SM} =1)

Many other similar analyses (2012-2013): Espinosa et al.; Carni et al.; Azatov et al; Ellis, You...

LHC prospects for next years

Spectrum below 1 TeV

SM particles... and nothing else below the TeV

(e.g. SUSY exclusion limits)

ATLAS Summary

A.	LAS SUSY Sea	ATLAS Preliminary						
Sti	atus: EPS 2013						$\int \!\!\!\! \pounds dt = (4.4 - 22.9) \; {\rm fb}^{-1}$	\sqrt{s} = 7, 8 TeV
	Model	e, μ, τ, γ	Jets	E ^{miss} T	∫£ dt[ft	- ⁻¹] Mass limit		Reference
Inclusive Searches	BUGGET MSUGRACMSSM MSUGRACMSSM MSUGRACMSSM BSUGRACMSSM BSUGRACMSSM BSUGRACMSSM GMSG/RULFST GMSG/RULFST GGM (timo NLSP)	$\begin{matrix} 0 \\ 1 e, \mu \\ 0 \\ 0 \\ 1 e, \mu \end{matrix} \\ 2 e, \mu (SS) \\ 2 e, \mu \\ 1 \cdot 2 \tau \\ 2 \gamma \\ 1 e, \mu + \gamma \\ 2 e, \mu (Z) \end{matrix}$	2-6 jets 3-6 jets 3-6 jets 2-6 jets 3-6 jets 3-6 jets 3-6 jets 0-2 jets 0 1 b 0-3 jets	Tes Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	2 12 PM 2 1	(၈၆)-၈၈() မရာ (၈၈) မရာ (၈၈) ရာရီ)-နေမာ ရာရီ)-နေမာ ရာရီ)-နေမာမ မဆု-16 ရာရီ)-နေမာမ ဆန္-16 ရာရီ)-Sociev ရာရီ)-Sociev ရာရီ)-Sociev ရာရီ)-Sociev ရာရီ)-Sociev ရာရီ)-Sociev ရာရီ)-Sociev ရာရီ)-Sociev	ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 1208-4688 ATLAS-CONF-2013-027 1208-4688 ATLAS-CONF-2013-027 1210-10753 ATLAS-CONF-2012-142
ğ med.	Gravitino LSP $\tilde{g} \rightarrow b \tilde{b} \tilde{t}_{1}^{0}$ $\tilde{g} \rightarrow t \tilde{t} \tilde{t}_{1}^{0}$ $\tilde{g} \rightarrow t \tilde{t} \tilde{t}_{1}^{0}$ $\tilde{g} \rightarrow b \tilde{t} \tilde{t}_{1}^{1}$	0 0 0-1 e, µ 0-1 e, µ	3 b 7-10 jets 3 b 3 b 3 b	Yes Yes Yes Yes Yes	10.5 20.1 20.3 20.1 20.1	EV* scale 645 GeV 8 1.2 TeV 8 1.14 TeV 8 1.34 TeV 8 1.34 TeV	$\begin{split} m(\tilde{g}) &> 10^{-4} \text{ eV} \\ m(\tilde{\chi}_1^0) &< 600 \text{ GeV} \\ m(\tilde{\chi}_1^0) &< 200 \text{ GeV} \\ m(\tilde{\chi}_1^0) &< 400 \text{ GeV} \\ m(\tilde{\chi}_1^0) &< 300 \text{ GeV} \end{split}$	ATLAS-CONF-2012-147 ATLAS-CONF-2013-061 ATLAS-CONF-2013-054 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
direct production	$ \begin{array}{l} \underbrace{b_{1}}_{b_{1}}, \underbrace{b_{1}}_{t} \rightarrow b_{1}^{-1} \\ b_{1}b_{1}, b_{2} \rightarrow b_{1}^{-1} \\ i_{1}b_{1}b_{1}b_{2} - tt_{1}^{-1} \\ i_{1}b_{1}b_{1}b_{1} - tt_{1}^{-1} \\ i_{1}b_{1}b_{1}b_{1}b_{1} \rightarrow b_{1}^{-1} \\ i_{1}b_{1}b_{1}b_{1}b_{1} - b_{1}^{-1} \\ i_{1}b_{1}b_{1}b_{2}b_{1}b_{1}b_{1}b_{1}b_{1}b_{1}b_{1}b_{1$	$\begin{matrix} 0 \\ 2 \ e, \mu (SS) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \\ e, \mu (Z) \\ 3 \ e, \mu (Z) \end{matrix}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	100-530 GeV 5: 430 GeV 5: 167 GeV 5: 120 GeV 5: 120 GeV 5: 225-525 GeV 5: 200-510 GeV 5: 200-510 GeV 5: 200 GeV 5: 500 GeV 5: 500 GeV	ຄເຊື້າ)-ເປັນGeV ຄາເຊິ້າ)-ແກ້ເງິ້າ ຄາເຊິ້າ)-ສາເຊິ້າ-ອາເຊິ້າ ຄາເຊິ້າ]-ສາເຊິ້າ-ອາເຊິ້າ-ອາເຊິ້າ-SGeV ຄາເຊິ້າ]-20GeV ຄາເຊິ້າ-ສາເຊິ້າ-SGeV ຄາເຊິ້າ-JoGeV ຄາເຊິ້າ-ກາເວົ້າ-85GeV ຄາເຊິ້າ-ກາເວົ້າ-85GeV ຄາເຊິ້າ-ກາເວົ້າ-85GeV	ATLAS-CONF-2013-053 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-008 ATLAS-CONF-2013-053 ATLAS-CONF-2013-053 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
direct	$ \begin{array}{l} \tilde{\ell}_{\underline{L}R}\tilde{\ell}_{\underline{L}R}\tilde{\ell}_{\underline{L}R}\tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{\underline{L}}^{+} \tilde{\chi}_{1}^{-} \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} \tilde{\chi}_{1} - \tilde{\ell} \gamma(\ell \tilde{\gamma}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{-} \rightarrow \tilde{\ell}_{\ell} \nu \tilde{\ell}_{\ell} \ell(\tilde{\gamma} \gamma), \ell \tilde{\nu}_{\underline{\ell}}^{\ell} \ell(\tilde{\gamma} \gamma) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{\ell} \nu \tilde{\chi}_{1}^{\ell} (\tilde{\gamma} \gamma), \ell \tilde{\nu}_{\underline{\ell}}^{\ell} \ell(\tilde{\gamma} \gamma) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W^{*} \tilde{\chi}_{1}^{0} Z^{*} \tilde{\chi}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ	0 0 0 0	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7	2 85-315 GeV 12 125-450 GeV 12 180-330 GeV 12 180-330 GeV 12 19 19 19 19 19 19 19 19 19 19 19 19 19	$\begin{split} m[\tilde{\chi}_{1}^{2}] =& 0 \text{ GeV} \\ m[\tilde{\chi}_{1}^{2}] =& 0 \text{ GeV}, m[\tilde{\ell}, \bar{\gamma}] =& 0.5(m[\tilde{\chi}_{1}^{2}] + m[\tilde{\chi}_{1}^{2}]) \\ m[\tilde{\chi}_{1}^{2}] =& 0 \text{ GeV}, m[\tilde{\ell}, \bar{\gamma}] =& 0.5(m[\tilde{\chi}_{1}^{2}] + m[\tilde{\chi}_{1}^{2}]) \\ =& m[\tilde{\chi}_{1}^{2}], m[\tilde{\chi}_{1}^{2}] =& 0, m[\tilde{\ell}, \bar{\gamma}] =& 0.5(m[\tilde{\chi}_{1}^{2}] + m[\tilde{\chi}_{1}^{2}]) \\ m[\tilde{\chi}_{1}^{2}] =& m[\tilde{\chi}_{2}^{2}], m[\tilde{\chi}_{1}^{2}] =& 0.5(m[\tilde{\chi}_{1}^{2}] + m[\tilde{\chi}_{1}^{2}]) \\ m[\tilde{\chi}_{1}^{2}] =& m[\tilde{\chi}_{2}^{2}], m[\tilde{\chi}_{1}^{2}] =& 0.5(m[\tilde{\chi}_{1}] + m[\tilde{\chi}_{1}^{2}]) \\ \end{split}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035
particles	$\begin{array}{l} \text{Direct}~\tilde{x}_{1}^{+}\tilde{x}_{1}^{-}~\text{prod., long-lived}~\tilde{x}_{1}^{+}\\ \text{Stable, stopped}~\tilde{g}~\text{R-hadron}\\ \text{GMSB, stable}~\tilde{\tau},~\tilde{x}_{1}^{0}{\rightarrow}\tilde{\tau}(\tilde{e},\tilde{\mu}){+}\tau(\tilde{e}\\ \text{GMSB},~\tilde{x}_{1}^{0}{\rightarrow}\gamma\tilde{G},~\text{long-lived}~\tilde{x}_{1}^{0}\\ \tilde{x}_{1}^{0}{\rightarrow}qq\mu~(\text{RPV}) \end{array}$	Disapp. trk 0 ε, μ) 1-2 μ 2 γ 1 μ	1 jet 1-5 jets 0 0 0	Yes Yes - Yes Yes	20.3 22.9 15.9 4.7 4.4	ह <u>ै 270 GeV</u> 857 GeV ह 475 GeV ह 230 GeV व 700 GeV	$\begin{array}{l} m(\tilde{\tau}_{1}^{a})\!=\!m(\tilde{\tau}_{2}^{a})\!=\!160\;\text{MeV}, \tau(\tilde{\tau}_{1}^{a})\!=\!0.2\;\text{ns}\\ m(\tilde{\tau}_{2}^{a})\!=\!100\;\text{GeV}, 10\;\mu\text{s-cr}(\tilde{g})\!\!<\!1000\;\text{s}\\ 10\!\!<\!\!\tan\!\!\beta\!\!<\!\!50\\ 0.4\!\!<\!\tau(\tilde{\tau}_{1}^{b})\!\!<\!\!2\;\text{ns}\\ 1\;mm\!<\!cr\!<\!1\;m,\;\tilde{g}\;\text{decoupled}\\ \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 1210.7451
	$\begin{array}{l} LFV pp \rightarrow \widetilde{v}_\tau + X, \widetilde{v}_\tau \rightarrow e + \mu \\ LFV pp \rightarrow \widetilde{v}_\tau + X, \widetilde{v}_\tau \rightarrow e(\mu) + \tau \\ Blinear RFV CMSSM \\ \widetilde{x}_1^+ \widetilde{x}_1^-, \widetilde{x}_1^+ \rightarrow W \widetilde{x}_1^0, \widetilde{x}_1^0 \rightarrow ee\widetilde{v}_\mu, e\mu \widetilde{v} \\ \widetilde{x}_1^+ \widetilde{x}_1^-, \widetilde{x}_1^+ \rightarrow W \widetilde{x}_1^0, \widetilde{x}_1^0 \rightarrow ee\widetilde{v}_\mu, er\widetilde{v}, \\ \widetilde{g} \rightarrow qq \\ \widetilde{g} \rightarrow \widetilde{t}_1 t, \widetilde{t}_1 \rightarrow bs \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ e \\ a \\ c \\ a \\ c \\ c \\ c \\ c \\ c \\ c \\ c$	0 0 7 jets 0 0 6 jets 0-3 <i>b</i>	- Yes Yes - Yes	4.6 4.7 20.7 20.7 4.6 20.7	5. 1.51 TeV 5. 1.1 TeV 6.4 1.2 TeV 7.1 TeV 7.1 750 CeV 7.1 750 CeV 7.1 666 CeV 8. 880 CeV	$\begin{split} & J_{111}^{i}=0.10, J_{122}=0.05 \\ & J_{111}^{i}=0.10, J_{12233}=0.05 \\ & m(3)=0.3, I_{1233}=0.05 \\ & m(3)=0.3, I_{123}=0.05 \\ & m(\overline{I}_{1}^{2})=300 \text{GeV}, J_{121}>0 \\ & m(\overline{I}_{1}^{2})=80 \text{GeV}, J_{123}>0 \end{split}$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 1210.4813 ATLAS-CONF-2013-007
Other	Scalar gluon WIMP interaction (D5, Dirac $\chi)$	0	4 jets mono-jet	- Yes	4.6 10.5	sgluon 100-287 GeV M" scale 704 GeV	incl. limit from 1110.2693 m(χ)<80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data	√s = 8 TeV artial data	√s = 8 full c	3 TeV lata		10-1 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty

CMS Summary

Mass gap + small deviations: the non-linear EFT approach

 \rightarrow It describes any theory with a given symmetry pattern and light particle content

→Inspiration: *h=pNGB*

 \rightarrow 1 model= 1 set of Wilson coef.'s:

95/24

The role of R in ECLh

Constraining strongly-coupled models by considering S and T

- ✓ Strongly coupled scenarios are allowed by the current experimental data.
- ✓ The Higgs-like boson must have a WW coupling close to the SM one (κ_W =1):
 - With the 2nd WSR κ_W in [0.94, 1] at 95% CL
 - ✓ For larger departures from κ_W =1 the 2nd WSR must be dropped.
 - ✓ A moderate resonance-mass splitting implies $κ_W ≈ 1$
- ✓ Resonance masses above the TeV scale:
 - ✓ At LO $M_A > M_V > 1.5$ TeV at 95% CL.
 - ✓ With the 2nd WSR M_V > 4 TeV at 95% CL.
 - \checkmark With only the 1st WSR M_V < 1 TeV implies large resonance-mass splitting.

Determining the LECs in terms of resonance couplings

- ✓ Matching the Resonance Theory and the Electroweak Effective Theory.
- ✓ Similar to the QCD case.
- ✓ Short-distance constraints are fundamental.