

Physics highlights from the BESIII experiment Xiao-Rui Lyu (吕晓睿) University of Chinese Academy of Sciences (UCAS), Beijing (On behalf of the BESIII collaboration)

Flavor and top physics @ 100 TeV workshop March 4-7 2015, IHEP, Beijing, China

Outline

- **Introduction to the BESIII experiment**
- Physics highlights (not a complete list)
 - ✓ Light hadron spectroscopy: X(18??) states ...
 - Charmonium(-like) states and exotics:
 Zc states ...
 - Charmed hadron:
 - D^+ leptonic decays, $D^0 \rightarrow K\pi$ strong phase ...
 - \checkmark τ mass measurement

Charm from dedicated colliders

ADONE, FRASCATI '69-'93

SPEAR, SLAC, '72-'90 6×10²⁹ cm⁻².s⁻¹ BEPC, IHEP, '90-'04 5×10³⁰ cm⁻².s⁻¹

CESRc, Cornell, '04-'08 7×10³¹ cm⁻².s⁻¹

VEPP-4M, Novosibisk, '02-'12 1×10³⁰ cm⁻².s⁻¹

BEPCII, IHEP, '08-'22(?) 1×10³³ cm⁻².s⁻¹

Beijing Electron Positron Collider II (BEPCII)

Satellite view of IHEP, Beijing

玉泉港湾

BEPCII

BESIII

detector

LINAC

- Founded: 1984, Ecm=2-5 GeV
- 1989-2005 (BEPC): L_{peak}=1.0x10³¹ /cm²s
- 2008-now (BEPCII):
 - ~60% Physics run
 - ~30% Synchrotron radiation run

五福香火锅

The BEPCII Collider

BEMS (beam energy measurement system): based on Compton backscattering

SR R

Energies of the BEPCII Collider

BESIII – physics using "charm"

Charmonium physics:

- Spectroscopy
- transitions and decays
- Light hadron physics:
 - meson & baryon spectroscopy
 - glueball & hybrid
 - two-photon physics
 - e.m. form factors of nucleon

Charm physics:

- (semi)leptonic + hadronic decays
- decay constant, from factors
- CKM matrix: Vcd, Vcs
- D⁰-D⁰bar mixing and CP violation
- rare/forbidden decays

Tau physics:

- Tau decays near threshold

- tau mass scan

... and many more.

NIM A614, 345 (2010)

The BESIII detector

hermetic spectrometer for neutral and charged particle with excellent resolution, PID, and large coverage.

BESIII Collaboration

BESIII data samples

BEPCII can reach here!

- 3554 MeV: 0.024/fb τ mass
- 4100~4400 MeV: 0.5/fb coarse scan
- 3850~4590 MeV: 0.5/fb fine scan
- In 2015, we are doing energy scan at 2000~3000 MeV

Machine luminosity is optimal near ψ'' peak

Hadron Landscape

At BESIII, two golden measures to study hadron spectroscopy, *eps*. to search for exotics

- Light hadrons: charmonium radiative decays (act as spin filter)
- Heavy hadrons: direct production, radiative and hadronic transitions

$X(p\overline{p})$ observed in J/ψ radiative decays

 $J/\psi \rightarrow \gamma p \overline{p}$: enhancement at threshold

PWA of $J/\psi \rightarrow \gamma p \overline{p}$ $J^{PC}=0^{-+}: > 6.8\sigma$ better than other J^{PC} assignments

X(1835), X(1840) and X(1870) states

$J/\psi \rightarrow \gamma X(1835), X(1835) \rightarrow \pi^+\pi^-\eta'$

- Firstly observed at BESII
- Confirmed at BESIII
- Additional two states found

 $J/\psi \rightarrow \gamma X(1840), X(1840) \rightarrow 3(\pi^+\pi^-)$

Comparisons of the X(18??) states

- J/ψ radiative decays
- not found in $\psi'_{PRL108,112003 (2012)}$ radiative decays
- non a pure FSI
- PWA is needed

- ★ X(1840): J/ $\psi \rightarrow \gamma 3(\pi^+\pi^-)$ [PRD88, 091502]
- $^{\circ}$ X(1870): J/ψ → ωηπ⁺π⁻ [PRL107, 182001]
- ▲ X(1835): J/ ψ → γ(η $\pi^+\pi^-$) [PRL106, 072002]
- X(1840): $J/\psi \rightarrow \gamma(p\bar{p})$ [PRL108, 112003]
- + X(1840): $J/\psi \rightarrow \gamma(\omega \phi)$ [PRD87, 032008]

X(18??):

- near (p \overline{p}) threshold
- is a single particle?!?

Charmonium Spectrum

Hidden-charm region of the spectrum is well understood,

however,

in the open-charm region there are predicted states, but not yet seen...

Moreover...

In the last decade there were found not-predicted charmonium-like states with unexpected properties

The Zc(3900)[±]

 $M = 3894.5 \pm 6.6 \pm 4.5 \text{ MeV/c}^2$ $\Gamma = 63 \pm 24 \pm 26 \text{ MeV}$

Zc(3900)

CLEO-c: [Phys. Lett. B 727, 366 (2013)]

The neutral partner Zc(3900)⁰

 $e^+e^- \rightarrow \pi^0 Z_c(3900)^0 \rightarrow \pi^0\pi^0 J/\psi @ 4.230-4.260 \text{ GeV}$

Structure is seen in $\pi^0 J/\Psi$ (10 σ significance): • M = (3894.0±2.3±2.7) MeV/c² • Γ = (29±8.2±8.2) MeV

Z_c(3900) – four-quark isospin triplet?

A mystery of the Zc(3900)

$e^+e^- \rightarrow \pi^\mp \operatorname{Z}_c(3900)^\pm \rightarrow \pi^+\pi^-\omega @ 4.230\text{-}4.260~GeV$

38

 $M(\omega \pi)$ (GeV/c²)

There are three important decay modes for charmonium-like states:

- the fall-apart to open charm mesons;
- the cascade to hidden charm mesons;
- decays to light hadrons via intermediate gluons.

Since $Z_c(3900)$ decays to $J/\Psi\pi$, a sizeable annihilation rate could be expected with $\bar{c}c$ in S-wave (as for χ_c)

No significant signal observed: $\Gamma(Z_c(3900) \rightarrow \omega \pi) < 0.2 \Gamma(Z_c(3900))$

Annihilation to cc is suppressed?

The $Zc(3885)^{\pm}$ e⁺e⁻ $\rightarrow \pi Z_c(3885) \rightarrow \pi^-(D\bar{D}^*)^++c.c.$ @ 4.260 GeV

M = (3883.9±1.5±4.2) MeV/c²
Γ = (24.8±3.3±11) MeV

Single tag method:

- reconstruct π^+ and $D^0 \to K^-\pi^+$
- infer D^{*-}
- analyze as well $\pi^+D^-D^{*0}$

Confirmed in a separate analysis @4.23~4.25GeV with double tag method

- Is found structure (referred as Z_c(3885)) different decay mode of the Z_c(3900)?
 Z_c(3900) properties:
 - $M = (3899.0 \pm 3.6 \pm 4.9) \text{ MeV/c}^2$
 - Γ = (46±10±20) MeV
- Assuming it is, the partial width ratio:

 $\Gamma(Z_{c} \rightarrow DD^{*})/\Gamma(Z_{c} \rightarrow \pi J/\Psi)$ = 6.2±1.1±2.7

Tetraquark model disfavoured ?

Comparison between $Zc(3885)^{\pm}$ and $Zc(3900)^{\pm}$

The mass and width are consistent within $2\sigma!$

If this is $Z_c(3900)^+$, open charm decays are suppressed, since $\frac{\mathcal{B}(Z_c \to D^*\bar{D})}{\mathcal{B}(Z_c \to J/\psi\pi)} = 6.2 \pm 1.1 \pm 2.7$ Compared to e.g. $\frac{\mathcal{B}(\psi(4040) \to D^{(*)}D^{(*)})}{\mathcal{B}(\psi(4040) \to J/\psi\eta)} = 192 \pm 27$ Different dynamics in Y(4260)-Zc(3900)system! 20

PRL 111, 242001(2013)

The Zc(4020)[±]

 $\begin{array}{l} e^+e^- \rightarrow \pi \; Z_c(4020) \rightarrow \pi^+\pi^-h_c(1P) \\ h_c \rightarrow \gamma \eta_c, \\ \eta_c \rightarrow 16 \; \text{hadronic decay modes} \end{array}$

The cross section of $e^+e^- \rightarrow \pi^+\pi^-h_c$ is measured, and the shape is not trivial.

A structure, $Z_c(4020)^{\pm}$, is observed. Mass = 4022.9 \pm 0.8 \pm 2.7 MeV, Width = 7.9 \pm 2.7 \pm 2.6 MeV A weak evidence for $Z_c(3900)^{\pm} \rightarrow \pi^{\pm}h_c$

PRL113,212002 (2014)

The Zc(4020)⁰

 $e^+e^- \to \pi \ Z_c(4020)^0 \to \pi^0\pi^0h_c(1P)$

A structure on π^0 h_c invariant mass spectrum can be observed:

Mass = $4023.9 \pm 2.2 \pm 3.8$ MeV, Width is fixed to be same as its charged partner.

Another isospin triplet is established!

Cross sections for $e^+e^- \rightarrow h_c \pi^+\pi^$ and $e^+e^- \rightarrow h_c \pi^0 \pi^0$ are in agreement with isospin conservation

PRL 112, 132001 (2014)

The Zc(4025)[±]

4260 MeV

$$e^+e^- \rightarrow \pi Z_c(4025) \rightarrow \pi^- (D^*\overline{D}^*)^+ + c.c.$$

Tag a D⁺ and a bachelor π^- , reconstruct one π^0 to suppress the background.

A structure, named as Zc(4025), can be observed in the recoil mass of the bachelor π^{-} .

 $\Gamma(Z_{c}(4025)) = 4026.5 \pm 2.6 \pm 3.7 \text{ M}$ $\Gamma(Z_{c}(4025)) = 24.8 \pm 5.6 \pm 7.7 \text{ MeV}$

 $\sigma[e^+e^- \to (D^*\bar{D^*})^{\pm}\pi^{\mp}] = 137 \pm 9 \pm 15 \text{ pb at } 4.26 \text{ GeV}$ $\frac{\sigma[e^+e^- \to \pi^{\pm}Z_c(4025)^{\mp} \to (D^*\bar{D^*})^{\pm}\pi^{\mp}]}{\sigma[e^+e^- \to (D^*\bar{D^*})^{\pm}\pi^{\mp}]} = 0.65 \pm 0.09 \pm 0.06 \text{ at } 4.26 \text{ GeV}$

Coupling to D^*D^* is much larger than to πh_c if $Z_c(4025)$ and $Z_c(4020)$ are the same state.

 $Z_c(3900)^+$? $Z_c(3900)^0$? $Z_c(4020)^+$? $Z_c(4020)^0$?Which is the nature of these states? Isospin triplets?Different decay channels of the same observed states? Other decay modes?

Comparisons of B[$D^+ \rightarrow \mu^+ v_{\mu}$] and f_{D+}

Strong Phase $\delta_{\mathrm{K}\pi}$

- Improving the constraints on the charm mixing parameters is important for testing the SM, such as long-distance effect
- ✓ At charm threshold, strong phase is a unique contribution:
 - to extract the mixing parameter (x,y) from (x', y')
 - to (over-)constrain the CKM unitarity triangle, which is crucial for searching for new physics

Strong phase:
$$\frac{\left\langle K^{-}\pi^{+} \middle| \overline{D}^{0} \right\rangle^{DCS}}{\left\langle K^{-}\pi^{+} \middle| D^{0} \right\rangle^{CF}} \equiv -r_{K\pi} e^{-i\delta_{K\pi}}$$

Quantum correlation → Interference → access strong phase!

• Measuring $\delta_{K\pi}$ from rate differences if using external $r_{K\pi}$

€SII

Strong Phase $\delta_{K\pi}$

(BESIII: 2.92 fb⁻¹@3773MeV)

Reconstructed modes:

- Flavor tags: $K^-\pi^+$, $K^+\pi^-$
- CP+ tags (5 modes): K⁻K⁺, π⁺π⁻, K⁰_Sπ⁰π⁰, π⁰π⁰, ρ⁰π⁰
- + CP- tags (3 modes): $K_S^0 \pi^0$, $K_S^0 \eta$, $K_S^0 \omega$ + If we don't ignore the mixing effect + $2r_{K\pi} \cos \delta_{K\pi} + y = (1 + R_{WS}) \cdot A_{CP \to K\pi}$
 - $\mathbf{A}_{WS} \equiv \frac{\Gamma(D^0 \to K^+ \pi^-)}{\Gamma(D^0 \to K^- \pi^+)} = r_{K\pi}^2 + r_{K\pi} y' + \frac{(x^2 + y^2)}{2}$

with external inputs of $r^2_{K\pi}$, y_{CP} and R_{WS}

BESIII results:

 $\cos \delta_{K\pi} = 1.02 \pm 0.11 \pm 0.06 \pm 0.01$

CLEO-C results [Phys. Rev. D 86 (2012) 112001] $\cos \delta_{K\pi} = 0.81^{+0.22+0.07}_{-0.18-0.05}$ $\cos \delta_{K\pi} = 1.15^{+0.19+0.00}_{-0.17-0.08}$ (globalfit)

Single Tags ($10000 = \frac{K_S^0 \pi^0}{1.84} \frac{1.86}{M_{BC}(GeV/c^2)}$

PLB734, 227 (2014)

PRD 90(2014) 012001

τ mass measurement

- τ mass M_{τ} is an elementary parameter in SM
- test lepton universality
- compared to M_e and M_{μ} , M_{τ} has 3 order of worse precision.

BESIII took threshold scan method and collected dedicated energy scan data for this study

- □ fit to J/ψ and ψ' line shape incorporate with BEMS: for calibration of beam energy scale and spread
- □ fit to the hadronic cross sections at 4 energy points to measure M_{τ} (in total ~23/pb): 13 two-prong τ pair final states are used

Theoretical accuracy of modeling the cross section at the level of 0.1%

τ mass measurement (cont')

 $m_{\tau} = (1776.91 \pm 0.12^{+0.10}_{-0.13}) \text{ MeV}/c^2$

PRD 90(2014) 012001

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^2 = 1.0016 \pm 0.0042$$

Lepton universality can be tested at 0.4%

An updated scan is under discussion: $23 \ pb^{-1} \rightarrow 100 \ pb^{-1}$

The last, but not the least

• PWA of charmonium decays

In total 83 publications till now

✓ J/ψ→γηη [Phys. Rev. D. 87, 092009 (2013)]

$$\checkmark \qquad \psi(2S) \rightarrow p\bar{p}\pi^{0}, \ \psi(2S) \rightarrow p\bar{p}\eta \quad [PRL \ 110, 022001 \ (2013)]$$

- ✓ ...
- Charmonium(-like) spectroscopy and transitions

✓
$$\psi(2S) \rightarrow \pi^0 h_c$$
 [PRL 104, 132002 (2010)]

$$\checkmark \qquad \psi(2S) \rightarrow \gamma \eta_c(2S) \rightarrow \gamma K K \pi \quad [PRL 109, 042003 (2012)]$$

$$\checkmark e^+e^- \to \gamma X(3872) \to \gamma \pi^+ \pi^- J/\psi \text{ [PRL112, 092001 (2014)]}$$

$$e^+e^- \rightarrow \pi^+\pi^- X(3823)$$

$$\checkmark$$

- D semi-leptonic decays: $D \rightarrow K^- e^+ v$, $\pi^- e^+ v$
- $D \rightarrow Ks\pi^+\pi^-$ strong phase
- Λ_c hadronic decay rate
- Hadron pair production cross sections
- Collins fragmentation function

•

Summary

Huge statistics:

- J/ψ , ψ' and $\psi(3770)$ peaks
- XYZ studies
- R scans

Near future:

- will continue taking data (possibly) until 2020-22
- collect data at more energy points to complete scans
- higher luminosity expected from BEPCII
- analyze the full data samples
- many PWA to be completed

Stay tuned:

many new exciting results on their way

Thank you! 谢谢!