Flavour Physics @ Belle II (~10.58 GeV)

Phillip Urquijo, The University of Melbourne

Flavour Physics @ 100 TeV IHEP, Beijing, March 2015

Belle II (experiment) at SuperKEKB (collider)

- Successor to Belle@KEKB (1 ab⁻¹ of e⁺e⁻ data)
 - Extremely successful in understanding the nature of heavy quarks and leptons, but...

- "Super Flavour Factory" (B, D & τ) with 50 ab⁻¹ (~50 billion of each) needed to identify new physics (synergy with direct searches at LHC)
 - Belle II due for first physics in 2017–2018
- Any NP found by Belle II will have profound implications for new accelerator facilities.

The case for new physics manifesting in Belle II

Issues (addressable at a Flavour factory)

→ NP beyond the direct reach of the LHC

- Baryon asymmetry in cosmology → New sources of CPV in quarks and charged leptons
- Quark and Lepton flavour & mass hierarchy
 → higher symmetry, massive new particles, extended gauge sector
- 19 free parameters
 → Extensions of SM relate some, (GUTs)

$$\mathcal{L}_{\text{Yukawa}} = g_{u}^{ij} \,\bar{u}_{R}^{i} \,H^{T} \,\epsilon \,Q_{L}^{j} - g_{d}^{ij} \,\bar{d}_{R}^{i} \,H^{\dagger} \,Q_{L}^{j} - g_{e}^{ij} \,\bar{e}_{R}^{i} \,H^{\dagger} \,L_{L}^{j} + \text{h.c.}\,,$$

 $\mathcal{L}_{W^{\pm}\,\text{quark int.}} = \frac{g_2}{\sqrt{2}} W^+_{\mu} \bar{u}'_L \gamma^{\mu} V_{\text{CKM}} d'_L + \text{h.c.},$

- No (WIMP) candidates for Dark Matter
 → Hidden dark sector
- Finite neutrino masses \rightarrow Tau LFV.
- + Puzzling nature of exotic "new" QCD states.

B factories

"The Physics of B Factories" Book European Physics Journal C, 74:3026 (arXiv:1406.6311)

Belle: 1999-2010 analyses still ongoing

 $e^+e^- \rightarrow Y(4S) \rightarrow BB$ $\int L^{Y(4S)} dt \sim 710 \text{ fb}^{-1}$

2008 Nobel Prize

B factories

"The Physics of B Factories" Book European Physics Journal C, 74:3026 (arXiv:1406.6311)

Belle: 1999-2010 analyses still ongoing

 $e^+e^- \rightarrow Y(4S) \rightarrow BB$ $\int L^{Y(4S)} dt \sim 710 \text{ fb}^{-1}$

BaBar (**PEPII@SLAC**) and Belle (**KEKB@KEK**)

Together recorded over $10^9 e^+e^- \rightarrow Y(4S) \rightarrow BB$ events.

- Discovery of CPV in *B*
- Measurements of UT sides and angles
- Rare *B* decays
- Mixing in charm
- Searches for rare τ decays
- New hadrons

CKM Fits

 $\varepsilon_{\mathbf{k}}$

B-factories + LHCb indicate excellent agreement with the SM, but potential NP requires a different search paradigmetric diff

 $sin 2\beta$

Belle II Theory Interface Platform

Joint theory-experiment effort to study the potential impacts of the Belle II program, and complementarity with LHCb.

2 workshops a year, starting in June 2014. Received very well by theory and Belle II.

Deliverable: "KEK yellow report" by the end of 2016

Next OPEN B2TiP Workshop: 27-29 April 2015 @ Krakow http://kds.kek.jp/conferenceDisplay.py?confld=17654

B2TIP Working Groups

- Inclusive semi-leptonic (Vub, Vcb, mb) & Exclusive semi-leptonic and pure leptonic (Vub, Vcb, new physics)
- II. Electroweak penguins (inclusive, exclusive, semi-inclusive b->s 1+1-, angular analysis, very rare) & Radiative penguins (inclusive, exclusive b-> s/d gamma, CP violation, polarisation, very rare)
- III.Hadronic decays (charmless decays, direct CP violation)
- IV. Phi₁ (tree, penguins, new physics) & Phi₂ (penguin/tree interference)
- V. Phi₃ (time dependent/independent)
- VI. Charm (CPV, hadronic, leptonic, semileptonic decays, spectroscopy)
- VII.Tau (LFV, CPV, alphas) & Low multiplicity & EW
- VIII.Upsilon (nS) (dark matter, mb measurements etc, energy scan)&Charmonium (conventional, exotics XYZ)

Belle II & New Physics

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

Coordinators: Theory, Lattice, Belle II,

+ LHCb invitees

B2TIP Working Groups

- Inclusive semi-leptonic (Vub, Vcb, mb) & Exclusive semi-leptonic and pure leptonic (Vub, Vcb, new physics)
- II. Electroweak penguins (inclusive, exclusive, semi-inclusive b->s l+l-, angular analysis, very rare) & Radiative penguins (inclusive, exclusive b-> s/d gamma, CP violation, polarisation, very rare)
- III.Hadronic decays (charmless decays, direct CP violation)
- IV. Phi₁ (tree, penguins, new physics) & Phi₂ (penguin/tree interference)
- V. Phi₃ (time dependent/independent)
- VI. Charm (CPV, hadronic, leptonic, semileptonic decays, spectroscopy)
- VII.Tau (LFV, CPV, alphas) & Low multiplicity & EW
- VIII.Upsilon (nS) (dark matter, mb measurements etc, energy scan)&Charmonium (conventional, exotics XYZ)

Belle II & New Physics

Coordinators: Theory, Lattice, Belle II,

+ LHCb invitees

TABLE XXIII: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY models from Ref. [416]. $\bigstar \bigstar \bigstar$ signals large effects, $\bigstar \bigstar$ visible but small effects and \bigstar implies that the given model does not predict sizable effects in that observable.

	AC	RVV2	AKM	$\delta \mathrm{LL}$	FBMSSM
$D^0 - \overline{D}^0$	***	*	*	*	*
$S_{\psi\phi}$	***	***	***	*	*
$S_{\phi K_S}$	***	**	*	***	***
$A_{\rm CP} \left(B \to X_s \gamma \right)$	*	*	*	***	***
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***

Strengths of e⁺e⁻ @ Y(4S)

Full reconstruction of B

- modes w/ multiple v's
- inclusive modes

Hermeticity

minimal trigger for, e.g. Dalitz analysis

precision τ measurements

Neutral particles π^0 , K_S^0 , K_L^0 and for η , η , ρ +, etc.

other notable features

- Lepton universality: good PID for both μ[±] and e[±]
- high flavour-tagging efficiency

Belle II covering $\geq 90\%$ of 4π , and $\langle N(track) \rangle \sim 10$ per event

 $0.9^{10} \simeq 0.35$

1. B full reconstruction (Neutrinos & Inclusive)

P. Urquijo, Current & Future B physics at e+e-

MELBOURNE

2. EM Calorimetry: Neutrals & Electrons

- Far fewer background photons than hadron collider
- **2.** Higher performance calorimeter
- **3.** Much less material in front (good for electrons)

10

MELBOURNE

3. Flavour-tagging & Neutral Kaons

Tagging power ~30% for a B-factory

~2.0±0.3% for LHCb (<u>http://arxiv.org/pdf/1202.4979.pdf</u>)

In $B_d \rightarrow ssq$ CP eigenstate usually detected via K_s (> 10 X more efficient in Belle II than LHCb)

K_L detection much improved (Impossible @ LHCb)

How to make a Super Flavour Factory

KEKB to SuperKEKB...Built! (grey=recycled, colour=new)

SuperKEKB Master Schedule (Feb 2015)

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

14 THE UNIVERSITY OF MELBOURNE

Belle II Detector

[600+ collaborators, 99 institutes, 23 nations]

Belle II TDR, arXiv:1011.0352 **KL** and muon detector Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps , inner 2 barrel layers) **EM Calorimeter** CsI(TI), waveform sampling electronics (barrel) Pure CsI + waveform sampling (end-caps) later **Particle Identification** electrons (7GeV) Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (forward) Fake rate >2 x lower than in Belle **Vertex Detector** 2 layers Si Pixels (DEPFET) + 4 layers Si double sided strip DSSD positrons (4GeV) **Central Drift Chamber** Smaller cell size, long lever arm

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

15

Belle II Detector

[600+ collaborators, 99 institutes, 23 nations]

Resistive Plate Counter (harrel outer lavers)

Belle II TDR, arXiv:1011.0352

KL and muon detector

2MHz waveform - new trigger boards. Central Drift Chamber Smaller cell size, long lever arn Cosmic signal !

Beam-Background, Electromagnetic Calorimeter (ECL)

<u>Beam-related backgrounds are much larger</u> <u>than KEKB.</u>

- Touschek scattering
- Radiative Bhabha, 2-γ

Fake hits, pile up photons, radiation damage Suppression: based on high speed, waveform sampling electronics

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

6

MELBOURNE

Beam-Background, Electromagnetic Calorimeter (ECL)

6

MELBOURNE

CDC

Hardware work almost complete

- Wire stringing done in 2014
- Gas leak checks, tension measurements, cabling

Moved to main experimental hall in Jan 2015 DAQ tests ongoing.

HV cabling

D TeV

ccelerator Review Committee, 2015 Feb. 23-25

P. Urquijo, Be

THE UNIVERSITY OF

MELBOURNE

Pixel detector

PXD: excellent spatial granularity (resolution ~15 µm)

low material (0.16%X₀ for layer 1), huge data rate.

(Successful test beam in 2014 with PXD and SVD Prototypes) : To reduce 20 Gbit/s data from PXD, read out **Regions Of Interest** from projected SVD tracks

THE UNIVERSITY O

MELBOURNE

18

$\frac{\text{Sil}}{A \text{ few quality in}} \text{ A few quality in} \quad \text{Figure : } K_{S}^{0} \text{ mass peak}$

Figure : $K_{\rm S}^0$ mass peal Figure : Mass of matche

Tracking Performance

Cosmic ray interacting with CDC back endplate. 2-tracks identified.

VXD + CDC Tracking Resolution much better than Belle&Babar

Detector

450

Channel number

400

500

1100

Kaons

Aerogel RICH: Endcap PID

PID in the forward endcap2-layer aerogel radiator420 Hybrid-AvalanchePhoto-detectors (HAPD)

Increases the number of photons without degrading resolution

 $n_1 n_2$

(n₁<n₂)

NIM A548 (2005) 383

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

TOP +

ARICH

PID

Belle II<<<ARICH

Trigger & Data Flow Challenge

Belle II TDR, arXiv:1011.0352

2 stage trigger: Hardware (L1) then **Software**.

 30 kHz L1 trigger rate, 2ns bunch spacing
 40 x Belle,
 >99% efficiency for bb

Physics process	Cross section (nb)	Rate (Hz)				
$\Upsilon(4S) \to B\bar{B}$	1.2	960				
$e^+e^- \rightarrow ext{continuum}$	2.8	2200				
$\mu^+\mu^-$	0.8	640				
$\tau^+ \tau^-$	0.8	640				
Bhabha ($\theta_{\text{lab}} \ge 17^{\circ}$)	44	350 a				
$\gamma\gamma~(heta_{ m lab}\geq 17^\circ)$	2.4	19^{a}				
2γ processes b	~ 80	~ 15000				
Total	~ 130	~ 20000				
^a The rate is pre-scaled by a factor of 1/100.						
^b $\theta_{\text{lab}} \ge 17^{\circ}, p_t \ge 0.1 \text{GeV}/c$						

	Hardware Trigger rate	Physics output rate	event size
Belle	500 Hz	90 Hz	40 kB
Belle II	30 kHz	3-10kHz	200kB (max)
ATLAS		0.2kHz	1.6MB

Grid Computing

Ramping up Grid Computing Up to concurrent 18k jobs 2014, Only 10% @ nominal luminosity = Similar to ATLAS Run-1!

 \rightarrow Critical.

Normalized CPU usage by Country 41 Days from 2014-09-21 to 2014-11-01 real CPU(kHS06) ... CPU(kHS06) 14.45 40 150 kHSO6 @ Max ya) 34.12 **4.08** 120 19.99 96kHS06 in average 31 sites 23.08 ... 15.99 GRID, Cloud, local Bugger is available 15.96 2.32 more than $3ab^{-1}$ in tot_{al}^{2} 87 2.30 2.87 2.39 1.08 2.51 0.00 2014-09-28 2014-10-05 2014-10-19 2014-10-26 2014-10-12 Max: 150, Min: 18.7, Average: 95.6, Current: 84.3 11.49 **2.29** DE 0.0% 34.6% AN1 15.7% 🗖 AT 2.9% 1.8% 0.0% □ JP □ CA □ US 14.8% CZ 🗖 UA 1.8% MULTIPLE 0.0% 7.54 1.740 RU TR 0.6% 4.67 0.00 P. Urquijo, Belle II Experiment, Flavour @ 1000eV 24 MELBOURNE

Installation and Commissioning

The first 2-years, "Phases 2 & 3"

Phase 1 2016	"BEAST"/SuperKEKB & cosmics
Phase 2 Mid 2017- Early 2018	Partial Belle II, commissioning data up to ~O(200fb ⁻¹)
Full physics Oct 2018-	Full detector

Dark forces & light Higgs [new triggers] Bottomonium - exotics [Y(3S), $Y(5S) \rightarrow Y(6S)$]

Maximise early scientific output: diverse program of unique data sets.

Experiment	Scans/Off. Re	s. Y	C(5S)	γ	(4S)	$\Upsilon(3)$	BS)	$\Upsilon(2$	2S)	$\Upsilon($	1S)
		1087	$76 { m MeV}$	10580	MeV	10355	MeV	10023	MeV	9460	MeV
	$\rm fb^{-1}$	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}
CLEO	17.1	0.4	0.1	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54	R_{l}	, scan	433	471	30	122	14	99	-	-
Belle	100	121	36	711	772	3	12	25	158	6	102

The first 2-years, Dark Sector

Dark γ to LeptonsRadiative production of A' via ee $\rightarrow \gamma$ A'Dark Light Higgs $Y(2S,3S) \rightarrow A^0 \gamma, A^0 \rightarrow invisible, single \gamma$ trigger.Dark MatterNon-resonant production in ee $\rightarrow A' \gamma, A^0 \rightarrow invisible$ Dark Higgs-strahlungee $\rightarrow A'h', h' \rightarrow A'A'(*), l+l-$ or hadrons.

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

27 EBBE THE UNIVERSITY OF MELBOURNE

The first 2-years, below & above Y(4S)

Y(3S): Bottomonium dynamics (hyperfine splitting, compact states).

Above Y(4S): Exotic 4-quark states and precision m_b

Data taking profile & "the competition"

Year (end)

- We have different golden modes: e.g. Missing energy modes at Belle II (well-known); —powerful constraints on the charged Higgs.
 - But there are some areas of fierce competition...

Summary of CKM Metrology

	Belle	BaBar	Global Fit CKMfitter	LHCb Run-2	Belle II 50 ab ⁻¹	LHCb Upgrade 50 fb ⁻¹	Theory
<i>φ</i> ₁ : ccs	1.4°		1.5 °	0.8°	0.4°	0.3°	v. small.
φ₂: uud	4 ° _(WA)		2.1 °		1 °		~1-2°
<i>φ</i> ₃ : DK	14º		3.8 °	4 °	1.5°	1 °	negl.
V_{cb} inclusive	1.7%		2.4%		1.2%		
V_{cb} exclusive	2.2%				1.4%		
Vub inclusive	7%		4.5%		3.0%		
 V_{ub} exclusive	8%				2.4%		
 V ub leptonic	14%				3.0%		
Experiment	No resu Modera	ılt ate precisio	n	7	Theory	Moderate pred Clean / LQCD	ision

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

Very Precise

$B \rightarrow \tau/e/\mu v(\gamma)$ Projections

Belle, $B \rightarrow \mu v$, e v (Had) arXiv:1406.6356 Belle, $B \rightarrow I v$ gamma Preliminary (2014 B2TiP)

326

MELBOURNE

$B \to D^{(*)} \tau \nu$

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

5

10

 $q^2 (\text{GeV}^2)$

10

 $q^2 (\text{GeV}^2)$

≥ 2 ∨ (Missing E)

B → D^(*) τν : WA is ~5 sigma from the SM!
 Need differentials and more NP observables.

But, large background (D*(**)/v, D*X)

 $D\ell$

 $D^*\ell$

10

 $q^2 (\text{GeV}^2)$

5

Belle II \rightarrow better low pT tracking, & low p PID.

33

MELBOURNE

$|V_{ub}|$ (& $|V_{cb}|$): Future

Only Belle II can resolve |V_{ub/cb}| exclusive/ inclusive puzzles (or \rightarrow NP). Both 3 σ !

|V_{ub}| @ 2-3% precision for all approaches!

Had tagged Belle Phys. Rev. D 88, $B \to X_u l \nu$ 032005 (2013) Had tagged BABAR B $\rightarrow X_u l \nu$ Phys. Rev. Lett. Belle II 104, 021801 Had tagged Belle $B \to \pi l \nu$ PHYS. REV. D88 88.032005 (2013) Untagged BABAR PHYS. REV. D86, $B \to \pi l \nu$ 86, 092004(2012) SL tagged BABAR $B \to \omega l \nu$ PHYS. REV. D88, 072006 (2013) Belle II Untagged BABAR PHYS.REV. D 87, $B \to \omega l \nu$ 032004 (2013) 4.8 3.2 3.4 3.6 4.6 $V_{ub} \times 10^{-3}$ 8 $B \rightarrow X_{u} l v$ HFAG BLNP 7 $B \rightarrow \tau \nu$ HFAG HFAG avg. w/ Lattice $-B \rightarrow \pi l \nu$ 6 $|V_{\rm ub}{}^L|\times 10^3$ 3 Standard Model \rightarrow -0.4 -0.3 -0.2 -0.10.1 0.2 0.3 0 ϵ_R Bernlochner, Ligeti, Turczyk, PRD 90 094003 (2014) THE UNIVERSITY OF

34

 $|V_{\rm ub}{}^L| \times 10^3$

MELBOURNE

New sources of CPV: Time Dep. CP Violation

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

35 <

Φ_1 , b \rightarrow c c s

	Observables	Belle or LHCb [*]	Cb* Belle II		LHCb	
		(2014)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$	$8 \text{ fb}^{-1}(2018)$	50 fb^{-1}
UT angles	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012 (0.9^\circ)$	0.4°	0.3°	0.6°	0.3°
	$\alpha \ [^{\circ}]$	85 ± 4 (Belle+BaBar)	2	1		
	$\gamma \ [\circ] \ (B \to D^{(*)} K^{(*)})$	68 ± 14	6	1.5	4	1
	$2\beta_s(B_s \to J/\psi\phi) \text{ [rad]}$	$0.07 \pm 0.09 \pm 0.01^*$			0.025	0.009

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

36

THE UNIVERSITY OF

MELBOURNE

UT angle $\Phi_3 = \gamma$: Future

Experiment: statistics limited!!

Belle II naive scaling: gives $\Delta^{\sim}1.5-2^{\circ}$ (based on D $\rightarrow K_{s}\pi\pi$ only).

Many more D modes to explore.

Wid Wid M_{12} dominated by dispersive part of top boxes involve one operator at LO: $Q = \bar{q} \gamma$ CKMFitter, PRD 89, 033016 (2014) Asy Asy f_{q}^{q} dominated by absorptive part of charm boxes • Assume NP from Trees ($|V_{ud}|, |V_{us}|, |V_{cb}|, |V_{ub}|, |V_{ub$

• at 95% NP \leq (many x SM) \implies NP \leq (0.3 x SM) \implies NP \leq (0.05 x SM)

$$\begin{split} h \simeq 1.5 \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \frac{(4\pi)^2}{G_F \Lambda^2} \simeq \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \left(\frac{4.5 \text{ TeV}}{\Lambda}\right)^2 \\ h \\ \sigma = \arg(C_{ij}\lambda_{ij}^{t*}) \\ \text{P. Urquijo, Belle II Experiment, Flaveus Crocking (Crocking)} \end{split}$$

By Stage II, Λ ~ 20 TeV (**tree**) Λ ~ 2 TeV (**loop**)

Belle, B \rightarrow η ^c K0, JHEP 1410, 165 (2014) Belle, B $\rightarrow \omega$ Ks0, PRD 90 012002 (2014)

$b \rightarrow s$ Penguin ϕ_1

	Observables	Belle or LHCb	Be	lle II	LHC)
		(2014)	5 ab^{-1}	50 ab^{-1}	$8 \text{ fb}^{-1}(2018)$	50 fb^{-1}
Gluonic penguins	$S(B \to \phi K^0)$	$0.90\substack{+0.09\\-0.19}$	0.053	0.018	0.2	0.04
	$S(B ightarrow \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	0.028	0.011		
	$S(B \to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	0.100	0.033		
	$\beta_s^{\text{eff}}(B_s \to \phi \phi) \text{ [rad]}$	± 0.18			0.12	0.03
	$\beta_s^{\text{eff}}(B_s \to K^{*0} \bar{K}^{*0}) \text{ [rad]}$	± 0.19			0.13	0.03
Direct CP in hadronic Decays	$\mathcal{A}(B \to K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$	0.07	0.04		

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

39

THE UNIVERSITY OF

MELBOURNE

$b \rightarrow s$ Penguin ϕ_1 : 10 yr Timeline

 Belle II but not LHCb does modes with K_s mesons big fraction of b→s penguin modes (surprise) !

NB: Belle II projection based on naive extrapolations

Direct CPV in $B \rightarrow K\pi$: Future

- A_{CP} in hadronic modes cannot be understood w/out full isospin analysis.
 - Need neutral modes.

Inclusive Radiative B decays (BF)

Theory precision near experimental in $b \rightarrow s$ $b \rightarrow d$ can only be done well at Belle II.

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

MELBOURNE

42

Direct CPV in Inclusive decays

Belle, $A_{CP}(b \rightarrow s+d \gamma)$ arXiv:1501.01702 Babar, $A_{CP}(b \rightarrow s \gamma)$, PRD 90 092001 (2014)

	Observables	Delle en LUCh	D		ттт	Ch
	Observables		De		$L\Pi$	CD
		(2014)	$5 ab^{-1}$	50 ab^{-1}	8 fb ⁻¹ (2018	$\frac{3}{50 \text{ fb}^{-1}}$
Radiative	$\mathcal{B}(B \to X_s \gamma)$	$3.45 \cdot 10^{-4} (1 \pm 4.3\% \pm 11.6\%)$	7%	6%		
	$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$	$2.2\pm4.0\pm0.8$	1	0.5		
	$S(B \to K^0_S \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035		
	$\phi_s^{\text{eff}}(B_s \to \phi \gamma)$	± 0.20			0.13	0.03
	$S(B ightarrow ho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07		
	$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	0.3	_		
Electroweak penguins	$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40	< 15	30%		
	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55	< 21	30%		
	$C_7/C_9 \ (B \to X_s \ell \ell)$	${\sim}20\%$	10%	5%		
	$q_0^2 A_{\rm FB}(B \to K^* \mu \mu)$	10%	30%	10%	5%	2%
	$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$	_	< 2	_		
	$\mathcal{B}(B_s \to \mu \mu) \ [10^{-9}]$	±1.0			0.5	0.2
						THE UNIVERSITY

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

43

$b \rightarrow s\{d\}$ Radiative Penguins $\phi_1(Null test!)$

Belle II will also precisely study b→d penguins

$b \rightarrow s\{d\}$ Radiative Penguins ϕ_1 (Null test!)

Belle, $B \rightarrow Ks \eta' \gamma$ Preliminary (2014)

Belle II will also precisely study b→d penguins

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

44

τ Lepton Flavour Violation: $m \rightarrow m_{GUT}$

 LFV is a theoretically clean null test of the SM: BF~10⁻²⁵

τ decays uniquely studied at B-factories.

NP may induce LFV at one-loop:

	reference	τ→μγ	τ→μμμ
SM + heavy Maj v_R	PRD 66(2002)034008	10 ⁻⁹	10 ⁻¹⁰
Non-universal Z'	PLB 547(2002)252	10 ⁻⁹	10 ⁻⁸
SUSY SO(10)	PRD 68(2003)033012	10 ⁻⁸	10 ⁻¹⁰
mSUGRA+seesaw	PRD 66(2002)115013	10 -7	10 ⁻⁹
SUSY Higgs	PLB 566(2003)217	10 ⁻¹⁰	10 ⁻⁷

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

46

Lepton Flavour Violation

- 2 orders of magnitude improvement.
- Hadron machines not competitive- trigger and track p_T limiting (even $\mu\mu\mu$).

Big program of τ physics in preparation!

Summary

50 × integrated luminosity @ Belle II will probe significantly into > 1 TeV mass scale

- Rich physics program at SuperKEKB/Bellell in preparation
 - Precision CKM
 - New sources of CPV
 - Lepton Flavour Violation
 - Dark Sectors
 - QCD exotics
- SuperKEKB commissioning starts 2016
- Belle II sub-detectors partially built, and DAQ integrated.
- Belle II first physics in 2017 (Phase2)—2018(Phase3)!

The Belle II Collaboration

 Belle experiment@KEKB (1999-2010)
 [400 collaborators, 15 nations]

Belle II experiment@SuperKEKB (online in 2016) [~650 collaborators, 99 institutions, 23 nations/regions]

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

50

Golden modes: B physics

	Observables	Belle	Bell	e II
		(2014)	5 ab^{-1}	50 ab^{-1}
UT angles	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$ [64]	0.012	0.008
	α [°]	85 ± 4 (Belle+BaBar) [24]	2	1
	$\gamma \ [^{\circ}]$	68 ± 14 [13]	6	1.5
Gluonic penguins	$S(B \to \phi K^0)$	$0.90^{+0.09}_{-0.19}$ [19]	0.053	0.018
	$S(B \to \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$ [65]	0.028	0.011
	$S(B \to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$ [17]	0.100	0.033
	$\mathcal{A}(B \to K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$ [66]	0.07	0.04
UT sides	$ V_{cb} $ incl.	$41.6 \cdot 10^{-3} (1 \pm 1.8\%) [8]$	1.2%	
	$ V_{cb} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{\text{ex.}} \pm 2.7\%_{\text{th.}}) [10]$	1.8%	1.4%
	$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} (1 \pm 6.0\%_{\text{ex.}} \pm 2.5\%_{\text{th.}}) [5]$	3.4%	3.0%
	$ V_{ub} $ excl. (had. tag.)	$3.52 \cdot 10^{-3} (1 \pm 8.2\%)$ [7]	4.7%	2.4%
Missing E decays	$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$96(1 \pm 27\%)$ [26]	10%	5%
	$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7 [67]	20%	7%
	$R(B \to D \tau \nu)$	$0.440(1 \pm 16.5\%) \ [29]^{\dagger}$	5.6%	3.4%
	$R(B ightarrow D^* au u)^{\dagger}$	$0.332(1 \pm 9.0\%) \ [29]^{\dagger}$	3.2%	2.1%
	$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40 [30]	< 15	30%
	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55 [30]	< 21	30%
Rad. & EW penguins	$\mathcal{B}(B \to X_s \gamma)$	$3.45 \cdot 10^{-4} (1 \pm 4.3\% \pm 11.6\%)$	7%	6%
	$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$	$2.2 \pm 4.0 \pm 0.8$ [68]	1	0.5
	$S(B\to K^0_S\pi^0\gamma)$	$-0.10 \pm 0.31 \pm 0.07$ [20]	0.11	0.035
	$S(B ightarrow ho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$ [21]	0.23	0.07
	$C_7/C_9 \ (B \to X_s \ell \ell)$	$\sim \! 20\% [36]$	10%	5%
	$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7 [42]	0.3	_
	$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$	_	$< 2 \ [44]$ ‡	_

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

THE UNIVERSITY OF

MELBOURNE

Golden modes: D and Tau physics

	Observables	Belle	Be	lle II
		(2014)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$
Charm Rare	$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \cdot 10^{-3} (1 \pm 5.3\% \pm 3.8\%)$ [46]	2.9%	0.9%
	$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \cdot 10^{-3} (1 \pm 3.7\% \pm 5.4\%)$ [46]	3.5%	2.3%
	$\mathcal{B}(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5 [49]	30%	25%
Charm CP	$A_{CP}(D^0 \to K^+ K^-) \ [10^{-2}]$	$-0.32 \pm 0.21 \pm 0.09$ [69]	0.11	0.06
	$A_{CP}(D^0 \to \pi^0 \pi^0) \ [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$ [70]	0.29	0.09
	$A_{CP}(D^0 \to K_S^0 \pi^0) \ [10^{-2}]$	$-0.21 \pm 0.16 \pm 0.09$ [70]	0.08	0.03
Charm Mixing	$x(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.56 \pm 0.19 \pm {0.07 \atop 0.13}$ [52]	0.14	0.11
	$y(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.30 \pm 0.15 \pm \frac{0.05}{0.08}$ [52]	0.08	0.05
	$ q/p (D^0 \to K^0_S \pi^+ \pi^-)$	$0.90 \pm {}^{0.16}_{0.15} \pm {}^{0.08}_{0.06} \ [52]$	0.10	0.07
	$\phi(D^0 \to K^0_S \pi^+ \pi^-) \ [^\circ]$	$-6 \pm 11 \pm \frac{4}{5}$ [52]	6	4
Tau	$\tau \to \mu \gamma \ [10^{-9}]$	$< 45 \ [71]$	< 14.7	< 4.7
	$\tau \to e \gamma \ [10^{-9}]$	< 120 [71]	< 39	< 12
	$\tau \to \mu \mu \mu \ [10^{-9}]$	< 21.0 [72]	< 3.0	< 0.3

Dark Sector

Dark matter suggests the presence of a dark sector, neutral under all Standard Model forces (i.e. non-WIMP)

Absolute normalisation: B_s

- 5 ab⁻¹ B_S SL or Full recon. @ Y(5S) similar precision to B⁰ studies / 325 fb⁻¹ of Y(4S)
- f_s will be well measured: WA=15% \rightarrow O(1)%
- SU(3) Symmetry heavily relied upon at LHC, e.g. in B_s→µµ normalisation, needs to be rigorously tested.

			B _s Yields	
Tag Method	Tag Eff.	NB _s /NB	121/fb	5/ab
Untagged	2.000	f _s /f _{d,u} ≃0.25	1.4E+07	6.0E+08
Lepton tag	0.100	f _s /f _{d,u} ≃0.25	7.0E+05	3.0E+07
D _s :Φπ,K _S K,K [*] K	0.040	10 ⋅ f _s /f _{d,u}	2.8E+05	1.2E+07
B _s Full Recon.	0.004	≫10	2.8E+04	1.2E+06

Inclusive $B \rightarrow X_s$ {ee, $\mu\mu$ }

- More precise theory.
- Sum of exclusive hadronic final states
- Lepton "universality".

Belle, $B \rightarrow Xs \mid I$, arXiv:1402.7134 (2014) Babar, $B \rightarrow Xs \mid I$, PRL 112, 211802 (2014)

Exclusive $B \rightarrow \{K^*, K\} \{e e, \mu \mu\}$

- Lepton Universality.
- Photon Polarisation (low q²).
- **TDCPV** $B_d \rightarrow K^*(K_S \pi^0) |+|$ arXiv: 1502.05509
- \rightarrow Third generation
 - B→Kττ <3x10⁻⁴ in 50/ab
 - B_s→ττ <2x10⁻³ in 5/ab @ Y(5S)

P. Urquijo, Belle II Experiment, Flavour @ 100 TeV

55